• Choose a month

  • Rapt in Awe

    My Journey through the Astronomical Year

    Think of this as a "companion text" to this, the main web site. Not required reading, butI hope you'll find it interesting and helpful.

Look north in September 2014 – the king’s on the rise!

Yes, that’s Cepheus, the King – remember that Cassiopeia (the “W” ) is the Queen. Though Cepheus makes a familiar “home plate” asterism, it’s not nearly so memorable as the “W” of Cassiopeia, primarily because its stars are dimmer than those of the “W.” In fact, you might have difficulty picking it out at first, but here’s a tip: Follow the familiar “Pointers” of the Big Dipper to the North Star – then keep going, but not too far. The first bright star you meet will mark the tip of the Cepheus home plate – It’s about one fist away from Polaris. For comparison, the Pointer stars are nearly three times that far in the other direction.

Also coming up below the “W” is the “Bow” asterism that marks Perseus, who is carrying the head of Medusa, which contains the “Demon Star,” Algol. We’ll take that up next month when they’re higher in the sky and easier for all to see. Here’s a chart.

Click image for a larger version. (Developed from Starry Nights Pro screenshot.)

For a printer-friendly version of this chart, download this.

To review the connecting mythology, which helps me remember the related constellations, here’s the story in brief.

Cepheus and Cassiopeia have a daughter Andromeda whose beauty makes the sea nymphs jealous. They enlist Poseidon to send a sea monster to ravage the coastline of Ethiopia, the kingdom of Cepheus and Cassiopeia. To appease the monster, the good king and queen chain Andromeda to a rock along the coast, but Perseus rescues her and together they escape on Pegasus, his flying horse.

You meet Andromeda and Pegasus – the flying horse is much easier to identify as the “Great Square” – in the “Look East” post this month. Also in the “Look East”  post we detail the “Three Guides,” three stars that mark the zero hour in the equatorial coordinate system used to give a permanent address to all stars. The first of those Three Guides is Beta Cassiopeia, visible in our northeastern sky, and so on the chart with this post.

Moving from mythology to science, Cepheus is probably best known today for a special type of star called a Cepheid variable. This is a star that changes in brightness according to a very precise time table. What’s more, it was discovered that the length of a Cepheid’s cycle – that is the amount of time it takes to grow dim and then brighten again – is directly related to its absolute magnitude. The absolute magnitude of a star is a measure of how bright it really is as opposed to how bright it appears to us. (How bright it appears is, of course, related to how far away it is.) That makes Cepheid variables a sort of Rosetta Stone of the skies.

It is relatively easy to time the cycle of a variable, even if the star is quite faint from our viewpoint. These cycles usually cover a few days. If you can identify the length of this cycle, you then can know the absolute magnitude of a star. And if you know its absolute magnitude, it’s a simple matter to compare that to how bright it appears to us and thus determine its approximate distance from us.

This is a huge breakthrough. Without Cepheid variables astronomers were at a loss for determining the distance of anything that was more than a few hundred light years away. The distance to such “close” stars could be determined using a very common method known as parallax – that is, determining how the star appeared to change position slightly from opposite sides of the Earth’s orbit. But that change in position is extremely tiny and difficult to measure even with very close stars. With the Hipparcos satellite and computer analysis, it has been possible to use this parallax system for stars as far as 3,000 light years. But that still is close by astronomy standards. (Keep in mind our galaxy is about 100,000 light years across.) But Cepheid variables can even be found in other galaxies. In fact, they played a huge role in proving that “spiral nebulae” were really other “island universes” – that is, other galaxies. The Hubble Space Telescope has found Cepheids out to a distance of about 100 million light years – a huge leap from the 3,000 light years we can reach with the parallax method.

There are other ways of making an educated guess at an object’s distance, and they frequently are quite complex and indirect. But the Cepheid variable has been one of the most important tools in the astronomer’s tool kit for the past century. It was in 1908 that Henrietta Swan Leavitt, a $10.50 a week “calculator” at Harvard Observatory noticed a pattern while doing tedious work cataloging stars and saw it’s importance. Though she published a paper about it, she never really received the credit she deserved during her lifetime for this breakthrough discovery.

So when you look at this “home plate” in the sky, see if you can find the fourth magnitude star, Delta Cephei – it’s not hard to spot under good conditions. (See the chart above.) When you find it, pay homage to it for the key role it has played in unlocking the secrets of the universe – for once astronomers know the distance of an object they can make all sorts of deductions about its composition, mass, and movement.

Look east In September 2013 – and take a journey from mythology to science

As we travel September skies we’ll move from the age of mythology to the age of science.

First, the age of mythology. Had you been born a few hundred – or even a few thousand – years ago, the eastern sky in September shortly after sunset would look something like this to your imaginative eye.

For most of recorded human history different cultures turned the stars into familiar patterns that  illustrated familiar mythological stories. In our September eastern skies shortly after sunset we have a wodnerful collection of five related mythological figures - Cepeheus (king), Cassiopeia (queen), Andromeda (princess), Perseus (hero), and Pegasus, the flying horse. (Developed froma screen shot of  Starry Night Pro. Click for larger version.)

For most of recorded human history different cultures turned the stars into familiar patterns that illustrated familiar mythological stories. In our September eastern skies shortly after sunset we have a wonderful collection of five related mythological figures – Cepheus  (king), Cassiopeia  (queen), Andromeda  (princess), Perseus  (hero), and Pegasus, the flying horse. (Slightly modified screen shot of Starry Night Pro. Click for larger version.)

The tale is easy to remember. The king (Cepheus) and queen (Cassiopeia) felt their kingdom was threatened by a sea monster, so as a sacrifice to the monster they tied their daughter, Andromeda, to a coastal rock. m But don’t worry, our hero Perseus, fresh from slaying Medusa, appears to rescue Andromeda, and they ride off across the starry heavens on his faithful steed, Pegasus, the flying horse.  Really – today the king and queen  would be tried for child abuse!

Of course as usual with the ancient constellations, the figures bear only the crudest relationship to the pattern of bright stars, so a lot of imagination is required to see them.  But that said, I do find this myth an easy way to remember these five constellations. In modern times we’ve drawn complex boundaries around each constellation and used these imaginary celestial boundaries to name and locate stars.  But more importantly, we’ve developed a celestial coordinates system much along the lines of Earthly longitude and latitude.

If you imagine the Earth’s latitude lines projected onto the dome of the sky, they become circles indicating declination – how far in degrees a point is from the celestial equator. The celestial equator itself is a projection onto the sky dome of Earth’s equator.  Longitude is projected and marked in 24 hours of “right ascension” so the whole celestial clock appears to pass overhead in the course of a day. I found it difficult remembering where these hours begin until I learned about the “Three Guides.” These are three bright stars –  indicated by arrows in the chart below – that fall very close to the zero hour line of right ascension. Above them (think of these as preceding them, for they rise first)  the hours count backward from 24. Below them – think of these  as following them, since they rise afterwards – are the hours counting up from 0.

Prepared from a Starry Nights Pro screen shot - click for a larger version.

I prefer to remember my sky in terms of bright stars and asterisms, so Cassiopeia becomes the “W.” Andromeda  becomes “Andromeda’s Couch,”  and the flying horse becomes the “Great Square.”   But the Three Guides – the three bright stars indicated by arrows – allow you to see the sky in more scientific terms, for these are the starting points for laying a grid on the sky to create a precise address for each star in terms of its places on the grid. This grid is indicated above by the red lines. (Prepared from a Starry Nights Pro screen shot – click for a larger version.)

For a printer-friendly version of this chart, download this.

First, let’s look at the “Great Square” – or perhaps we should say “Great Diamond,” since that’s what it looks like when rising. Once overhead, it is certainly a square, and it forms the heart of Pegasus – the flying horse. The stars are all second and third magnitude – about the brightness of the stars in the Big Dipper – so wait until about an hour after sunset, then look east and you should be able to pick this out. Its stars mark out a huge chunk of sky that is nearly empty of naked-eye stars, which is why I sometimes call it the “Great Empty Square.”

Andromeda’s Couch, ties to the northern corner of the square. In fact, it shares a star with this corner. “Andromeda’s Couch” is just my memory device – others would simply call this “Andromeda” because that’s the name of the constellation it dominates. I have difficulty seeing the lovely maiden chained to a rock by looking at these stars.  But knowing that in myth Andromeda was a lovely woman who was rescued by Perseus, I like to think of this graceful arc of stars as her couch with her a misty fantasy figure lying there in alluring fashion. That said, notice three things about it:

1. The bright star at the right – southern – end is also a corner of the Great Square, as we mentioned. In fact, it is the brightest star in the Great Square.

2. The three brightest stars in the “couch” – I’m ignoring the second star which is fainter – the three brightest are about as close to being identical in brightness as you can get – magnitude 2.06, 2.06, and 2.09. They also are pretty equally spaced. Hold your fist at arm’s length and it should easily fit in the gaps between these stars, which means there are 10-15 degrees between each star. That’s similar to the spacing between the four stars in the “Great Square” as well.

3. The second star, as mentioned, is dimmer by more than a full magnitude (3.25), but it’s what gives this asterism a couch feeling to me – or maybe a lounge chair – marking a sharp, upward bend.

And where’s the hero Perseus? he should be nearby, right? Well he’s on his way, rising in the northeast after Cassiopeia, but we’ll leave him for next month when he’s more easily seen.

Now for the pièce de résistance!

This is a group of stars that are new to me, at least in this role, and I love them! They’re called “The Three Guides,” but I think of it as four guides They can all be tied together by a long, graceful arc that represents the great circle of zero hour right ascension – which is the “celetsial meridian” as defined in the equatorial coordinate system.

As mentioned, the equatorial coordinate system is essentially a projection of the Earth’s latitude and longitude system onto the sky to enable us to give a very precise address for any star or other celestial object, as seen from our planet. On Earth we require an arbitrary circle be chosen as the zero longitude line, and this is the circle that passes through the poles and Greenwich, England.

In the heavens we also need such a circle, and the one chosen is the one that passes through the point where the Sun crosses the celestial equator at the vernal equinox. But that point is not represented by any bright star, so how do we know where this “zero hour” circle is? We need it to put numbers to the entire system. Enter “The Three Guides.”

They start with the star Beta Cassiopeia. This is the western most star in the familiar “W”  – the one which rises first and leads the rest. (Remember – all stars appear to move westward as the earth turns.)  From there draw an arc to Alpha Andromedae. This is the star mentioned before where Andromeda and the Great Square are joined – they both share this star.

The third star of this trio is Gamma Pegasi – the star that appears to be at the bottom of the Great Square when we see it as a diamond when rising. (If this is not clear, one glance at the accompanying chart should make it so.)

When I look at this great arc, however, I always start to trace it right from the North Star, Polaris. All the great circles representing meridians of right ascension pass through the north and south celestial poles.

As you move upward from this zero line in the general direction of the Summer triangle, the hours count backwards counting the Zero Hour as 24. Move downward, towards the horizon and the hours count forward from zero. This sequence is marked on our chart around Polaris.

Taking a wide view of the “Three Guides” to incorporate the North Star and Summer Triangle as well. Here’s what we should see about an hour after sunset. Click image for larger version. (Derived from Starry Nights Pro screen shot.)

For a printer-friendly version of this chart, download this.

What’s important is to be able to visualize this one circle in the sky and connect it with the another circle crossing it at a right angle – the celestial equator. If you can do that, you will have identified the two zero points on the equatorial coordinate system and moved your knowledge of finding things in the sky from the mythological arena to the scientific one. That’s why these three “guides” excite me so. When you can look up at the night sky and see not only a dome, but a curved grid projected on it, and on this grid be able to attach meaningful numbers, then you have graduated to sky explorer, first class!

. . . and the rest of the guideposts?

If you’ve located the new September asterisms and identified The Three Guides, then it’s time to check for the more familiar stars and asterisms you might already know, assuming you have been studying the sky month by month. (If this is your first month, you can skip this section.) So here are the guidepost stars and asterisms still visible in our September skies.

  • The Summer Triangle is now high overhead, though still favoring the east. Vega, its brightest member, reaches its highest point about an hour after sunset and moves into the western sky. Altair and Deneb are still a bit east, but will cross the meridian within about three hours of sunset.
  • The “Teapot,” marking the area of the Milky Way approaching the center of our galaxy, is due south about an hour after sunset. Well into the southwest you’ll find the red star Antares that marks the heart of the Scorpion.
  • Arcturus (remember, follow the arc of the Big Dipper’s handle to Arcturus) is due west and about 25 degrees above the horizon as twilight ends.
  • The Keystone of Hercules and the circlet that marks the Northern Crown can both be found high in the western sky by tracing a line between Vega and Arcturus.

Look north in September 2013 – the king’s on the rise!

Yes, that’s Cepheus, the King – remember that Cassiopeia (the “W” ) is the Queen. Though Cepheus makes a familiar “home plate” asterism, it’s not nearly so memorable as the “W” of Cassiopeia, primarily because its stars are dimmer than those of the “W.” In fact, you might have difficulty picking it out at first, but here’s a tip: Follow the familiar “Pointers” of the Big Dipper to the North Star – then keep going. The first bright star you meet will mark the tip of the Cepheus home plate. (It’s about one fist away from Polaris – the Pointer stars are nearly three times that far in the other direction.)

Also coming up below the “W” is the “Bow” asterism that marks Perseus, who is carrying the head of Medusa, which contains the “Demon Star,” Algol. We’ll take that up next month when they’re higher in the sky and easier for all to see. Here’s a chart.

Click image for a larger version. (Developed from Starry Nights Pro screenshot.)

For a printer-friendly version of this chart, download this.

To review the connecting mythology, which helps me remember the related constellations, here’s the story in brief.

Cepheus and Cassiopeia have a daughter Andromeda whose beauty makes the sea nymphs jealous. They enlist Poseidon to send a sea monster to ravage the coastline of Ethiopia, the kingdom of Cepheus and Cassiopeia. To appease the monster, the good king and queen chain Andromeda to a rock along the coast, but Perseus rescues her and together they escape on Pegasus, his flying horse.

You meet Andromeda and Pegasus – the flying horse is much easier to identify as the “Great Square” – in the “look east” post this month. Also in the “Look East”  post we detail the “Three Guides,” three stars that mark the zero hour in the equatorial coordinate system used to give a permanent address to all stars. The first of those Three Guides is Beta Cassiopeia, visible in our northeastern sky, and so on the chart with this post.

Moving from mythology to science, Cepheus is probably best known today for a special type of star called a Cepheid variable. This is a star that changes in brightness according to a very precise time table. What’s more, it was discovered that the length of a Cepheid’s cycle – that is the amount of time it takes to grow dim and then brighten again – is directly related to its absolute magnitude. The absolute magnitude of a star is a measure of how bright it really is as opposed to how bright it appears to us. (How bright it appears is, of course, related to how far away it is.) That makes Cepheid variables a sort of Rosetta Stone of the skies.

It is relatively easy to time the cycle of a variable, even if the star is quite faint from our viewpoint. These cycles usually cover a few days. If you can identify the length of this cycle, you then can know the absolute magnitude of a star. And if you know its absolute magnitude, it’s a simple matter to compare that to how bright it appears to us and thus determine its approximate distance from us.

This is a huge breakthrough. Without Cepheid variables astronomers were at a loss for determining the distance of anything that was more than a few hundred light years away. The distance to such “close” stars could be determined using a very common method known as parallax – that is, determining how the star appeared to change position slightly from opposite sides of the Earth’s orbit. But that change in position is extremely tiny and difficult to measure even with very close stars. With the Hipparcos satellite and computer analysis, it has been possible to use this parallax system for stars as far as 3,000 light years. But that still is close by astronomy standards. (Keep in mind our galaxy is about 100,000 light years across.) But Cepheid variables can even be found in other galaxies. In fact, they played a huge role in proving that “spiral nebulae” were really other “island universes” – that is, other galaxies. The Hubble Space Telescope has found Cepheids out to a distance of about 100 million light years – a huge leap from the 3,000 light years we can reach with the parallax method.

There are other ways of making an educated guess at an object’s distance, and they frequently are quite complex and indirect. But the Cepheid variable has been one of the most important tools in the astronomer’s tool kit for the past century. It was in 1908 that Henrietta Swan Leavitt, a $10.50 a week “calculator” at Harvard Observatory noticed a pattern while doing tedious work cataloging stars and saw it’s importance. Though she published a paper about it, she never really received the credit she deserved during her lifetime for this breakthrough discovery.

So when you look at this “home plate” in the sky, see if you can find the fourth magnitude star, Delta Cephei – it’s not hard to spot under good conditions. (See the chart above.) When you find it, pay homage to it for the key role it has played in unlocking the secrets of the universe – for once astronomers know the distance of an object they can make all sorts of deductions about its composition, mass, and movement.

Look North In August 2012 – All hail the Queen! (OK – the “W”)

Click image for larger view. (Derived from Starry Nights Pro screen shot.)

For printer friendly chart, download this.

The easily recognizable “W” of Cassiopeia (kass ee oh pee’ uh), the Queen, is well up in the northeast early on an August evening. Find it and you have a good starting point for tracing the Milky Way on south through Deneb.

When the “W” circles to a point high overhead, it will look like an “M,” of course, but that’s just part of the fun. Some people also see this asterism as forming the chair – or throne – for Cassiopeia. I like it because along with the Big Dipper, it nicely brackets the north celestial pole and provides another rough guide for finding Polaris. As the “W” rises, the Dipper plunges until it may be too close to the horizon for many to see. Both the stars of the Dipper and the stars of the “W” are 28 degrees from Polaris – roughly three fists.  When the Dipper gets on the horizon, the “W”  turns into an “M” directly above Polaris, so just measure three fists down from this “M” and you should be in the right region for finding the North Star.

Normally I do not find constellations or their associated myths too useful. Cassiopeia is an exception. Knowing the myth connected with this constellation will help you remember several important neighbors, and though we’ll meet these in the next two months, I’ll give you a “heads up” now and repeat the story when we meet the others. It goes like this:

Cepheus (King of Ethiopia)  and Cassiopeia (Queen of Ethiopia) have a beautiful daughter, Andromeda. Cassiopeia bragged so much about Andromeda’s beauty, that the sea nymphs got angry and convinced Poseidon to send a sea monster to ravage Ethiopia’s coast. To appease the monster, Cepheus and Cassiopeia  chained the poor child (Andromeda)  to a rock. But don’t worry. Perseus is nearby and comes to the rescue of the beautiful maiden, and they ride off into the sunset on Pegasus, Perseus’ flying horse! These five constellations – Cepheus, Cassiopeia, Andromeda, Perseus, and Pegasus – are all close to one another in the sky and all are visible in the fall, so we will meet them soon.

One of the bright stars of Cassiopeia is also a special aid to finding your way around the heavens, but in a more modern sense. It is part of an asterism known as the “Three Guides.”  These three bright stars are all very close to the Zero Hour Right Ascension circle in the equatorial coordinate system – the system that is roughly the celestial equivalent of latitude and longitude and is commonly used to give a permanent address to stars and other celestial objects. These three bright stars mark a great circle that goes through both celestial poles and the equinoxes and is known by the eminently forgettable name of  “equinoctial colure.”

Click image for larger view. (See note at end of post for source of this drawing.)

We’ll meet the other two stars in this asterism next month, but for now, simply take note of Beta Cassiopeia.It’s marked on our chart and is the bright star at that end of the “W” that is highest in the sky this month. Remember that this star is very near the “0” hour  circle, which you can visualize by drawing an imaginary line from Polaris through Beta Cassiopeia and eventually the south celestial pole. This line will cross the ecliptic at the equinoxes.  Of course, this helps only if you are familiar with the equatorial coordinate system! If that means nothing to you, then don’t clutter your mind with this right now.

The source for the drawing showing the equinoctial colure can be found here.

Look north in September 2011 – the king’s on the rise!

Yes, that’s Cepheus, the King – remember that Cassiopeia (the “W” ) is the Queen. Though Cepheus makes a familiar “home plate” asterism, it’s not nearly so memorable as the “W” of Cassiopeia, primarily because its stars are dimmer than those of the “W.” In fact, you might have difficulty picking it out at first, but here’s a tip: Follow the familiar “Pointers” of the Big Dipper to the North Star – then keep going. The first bright star you meet will mark the tip of the Cepheus home plate. (It’s about one fist away from Polaris – the Pointer stars are nearly three times that far in the other direction.)

Also coming up below the “W” is the “Bow” asterism that marks Perseus, who is carrying the head of Medusa, which contains the “Demon Star,” Algol. We’ll take that up next month when they’re higher in the sky and easier for all to see. Here’s a chart.

Click image for a larger version. (Developed from Starry Nights Pro screenshot.)

For a printer-friendly version of this chart, download this.

To review the connecting mythology, which helps me remember the related constellations, here’s the story in brief.

Cepheus and Cassiopeia have a daughter Andromeda whose beauty makes the sea nymphs jealous. They enlist Poseidon to send a sea monster to ravage the coastline of Ethiopia, the kingdom of Cepheus and Cassiopeia. To appease the monster, the good king and queen chain Andromeda to a rock along the coast, but Perseus rescues her and together they escape on Pegasus, his flying horse.

You meet Andromeda and Pegasus – the flying horse is much easier to identify as the “Great Square” – in the “look east” post this month. Also in that post we detail the “Three Guides,” three stars that mark the zero hour in the equatorial coordinate system used to give a permanent address to all stars. The first of those Three Guides is Beta Cassiopeia, visible in our northeastern sky, and so on the chart with this post.

Moving from mythology to science, Cepheus is probably best known today for a special type of star called a Cepheid variable. This is a star that changes in brightness according to a very precise time table. What’s more, it was discovered that the length of a Cepheid’s cycle – that is the amount of time it takes to grow dim and then brighten again – is directly related to its absolute magnitude. The absolute magnitude of a star is a measure of how bright it really is as opposed to how bright it appears to us. How bright it appears is, of course, related to how far away it is. That makes Cepheid variables a sort of Rosetta Stone of the skies.

It is relatively easy to time the cycle of a variable, even if the star is quite faint from our viewpoint. These cycles usually cover a few days. If you can identify the length of this cycle, you then can know the absolute magnitude of a star. And if you know its absolute magnitude, it’s a simple matter to compare that to how bright it appears to us and thus determine its distance from us.

This is a huge breakthrough. Without Cepheid variables astronomers were at a loss for determining the distance of anything more than a few hundred light years away. The distance to such”close” stars could be determined using a very common method known as parallax – that is, determining how the star appeared to change position slightly from opposite sides of the Earth’s orbit. But that change in position is extremely tiny and difficult to measure even with very close stars. With the Hipparcos satellite and computer analysis, it has been possible to use this system for stars as far as 3,000 light years. But that still is close by astronomy standards. (Keep in mind our galaxy is about 100,000 light years across.) But Cepheid variables can even be found in other galaxies. In fact, they played a huge role in proving that “spiral nebulae” were really other “island universes” – that is, other galaxies. The Hubble Space Telescope has found Cepheids out to a distance of about 100 million light years – a huge leap from the 3,000 light years we can reach with the parallax method.

There are other ways of making an educated guess at an object’s distance, and they frequently are quite complex and indirect. But the Cepheid variable has been one of the most important tools in the astronomer’s tool kit for the past century. It was in 1908 that Henrietta Swan Leavitt, a $10.50 a week “calculator” at Harvard Observatory noticed a pattern while doing tedious work cataloging stars and saw it’s importance. Though she published a paper about it, she never really received the credit she deserved during her lifetime for this breakthrough discovery.

So when you look at this “home plate” in the sky, see if you can find the fourth magnitude star, Delta Cephei – it’s not hard to spot under good conditions. (See the chart above.) When you find it, pay homage to it for the key role it has played in unlocking the secrets of the universe – for once astronomers know the distance of an object they can make all sorts of deductions about its composition, mass, and movement.

Look east! In August 2011 – kick back, lie back, look up and enjoy our home galaxy!

This is the month to meet your neighbors – a few billion of them at least!

In August we break our pattern of focusing on bright stars and instead focus on that ancient stream of stars known as the Milky Way – our own galaxy. This means observing a bit later than normal, and if you live within urban or suburban light pollution, going to where you have really dark skies. This does not mean you have to move to – or visit – Arizona. I live in one of the worst light pollution regions of the US, and I can see the Milky Way from my back yard – and see it even better if I take a 12-minute drive to a nearby wildlife sanctuary. But I do have significantly darker skies than people just a mile or two from me. You need a clear moonless night and your eyes need to be well dark adapted. Then you want to look up for a wide, faint “cloud” with a  roughly north-to-south orientation.

I've reduced the brightness and contrast on this image in an attempt to approximate what can be seen from an area with light to moderate light pollution. Still, a photograph always shows more - but it just can't capture the magic of being there. In this case the photographer also caught a Perseid meteor. As you can see, the heart of the Milky Way is nicely framed by the bright Summer Triangle stars of Vega, Deneb, and Altair. Click image for larger version.

Seeing the Milky Way is worth the special effort. It is one of the most beautiful and awe-inspiring astronomical sights, and your naked eye is the best way to take it all in, though binoculars will provide a special treat as well.  In what follows, we’ll focus on where you should be to observe the Milky Way, when you should look. and finally,  where in the sky you should look.

1. Where you should be

Sadly, most people today are routinely denied this sight because of light pollution, but don’t despair! While the darker your skies are, the better, like me you may find that pretty dark skies are just a short drive away. There is an international guide to light pollution and here’s what it shows for light pollution in and around “Driftway Observatory,” my backyard.

On this map of light pollution for southeastern New England, Driftway Observatory is right in the center on the border of an orange/yellow area. Obviously black is the best. Blue is darned good. Green and yellow are desirable. Orange means getting poor; red and white are quite terrible. You should look for at least a yellow area - but to the south of a heavily light-polluted city if possible.

You can get a map  for any region of the world. The simplest path is to go here. Scroll down, to the thumbnail maps and choose a region of the world that suits you and download the map for that region. Another path is limited to observers in the United States, Canada, and Mexico. For them there are “Clear Sky Charts” – astronomical viewing weather forecasts – for hundreds of locations. You can find a location near you by starting here.  Underneath your regional Clear Sky Chart you will see a short list of “Nifty links.” The last one takes you to a light pollution map for that region. It may be helpful to know your latitude and longitude first, so If you don’t know what it is, you can find it here. All of this is useful information for any sky observer to have, so if you track down a Clear Sky Clock for your region,f or example, bookmark it.

Here’s how to make sense of the light pollution maps in terms of seeing the Milky Way.

Red – “Milky Way at best very faint at zenith.”

Orange – “Milky Way washed out at zenith and invisible at horizon.”

Yellow – “Some dark lanes in Milky Way but no bulge into Ophiuchus. Washed out Milky Way visible near horizon.”

Green – “Milky Way shows much dark lane structure with beginnings of faint bulge into Ophiuchus.”

If you can get into the blue, grey, or black areas – enjoy! I envy you 😉

One critical point though: Pay attention to where there are cities. They will create light domes that will wash out at least areas fairly low in the sky. In my situation I have two small cities, Fall River to the northwest and New Bedford to the northeast. Both have populations of around 100,000 and both create light domes in those regions of the sky. Fortunately, the northern sky isn’t important for seeing the Milky Way, especially in August. But if you have a large city – or shopping mall, or anything that might create a light dome – it is better to look for an area south of it. In August in mid-northern latitudes the  Milky  Way is best from right overhead on down to the southern horizon. That’s why my best view is from a wildlife sanctuary just a few miles away and right on the north shore of  Buzzards Bay and the ocean. It means when I’m looking at the southern Milky Way – towards the very center of our galaxy – I’m seeing it over a huge expanse of water where light pollution is the least.

2. When to look

Begin looking early on a moonless, August evening and ideally, when the skies are crystal clear – frequently this comes right after a cold front passes. Although the Milky Way can be seen many months of the year, one of the best times to see it is in August, about two hours after sunset. In 2010 your best views will come between August 1st and 15th – after that the Moon will offer more and more interference each night for the next two weeks.  However, by the 31st, you should get in a solid hour of Milky Way treat before the waning, gibbous Moon rises. If you miss it in the first two weeks of August, try again the first two weeks of September – this guide will still be useful, though everything will have moved higher and to the west a bit.

I say two hours after  sunset because it takes that long in mid-northern latitudes for it to get fully dark at this time of year, and you need full darkness. (You can find out the local time Astronomical Twilight ends – when it is fully dark – by going to this Web site. From the drop-down menu you’ll find there, choose “astronomical twilight.”) However, you can certainly start looking earlier. This is something where beach chairs or lounges are nice, and maybe even a blanket.  You can start about an hour after sunset when the brightest stars are visible. This will help you get your bearings and you can dark adapt as the skies get darker.

Finally, you need to protect your eyes from white lights. It takes 10-15 minutes for your eyes to become about 50 percent dark adapted. At that point your color vision is as good as it will get, but your sensitivity to dim light will continue to increase. In another 15 minutes or so you will reach about 90 percent dark adaption. The remaining 10 percent can take as long as four hours.  So I consider that after half an hour my eyes are about as good as I can expect them to be.  During all this time and beyond you should avoid looking at white light. You can use a red light to check a chart if you like, but keep it dim and use it sparingly. If you’re in a location where automobiles drive by, don’t look at them – close your eyes and turn away.

Where to look

When you set up your blanket or lounge chair, do your best to align it on a north-south axis with your head to the north and feet to the south. You may want to favor the east just a bit.

What you want to find as you start out is the familiar guidepost stars of the Summer TriangleVega, Deneb, and Altair. These were new guidepost stars in May, June, and July. If you are just starting this journey in August,they are still easy to pick out from our chart.  As the sky in the east starts to darken they will be the first stars visible, 30-45 minutes after sunset.

Click image for a larger view. (Derived from a Starry Nights Pro screen shot.)

You can download a printer friendly version of this chart here.

The brightest – and highest – of the three will be Vega, which will be approaching a point overhead. There are roughly two fists (24 degrees) between Vega and Deneb and nearly four fists (39 degrees) between  Deneb and Altair, so the Triangle is huge.

These three Summer Triangle stars roughly bracket the Milky Way – that is Vega is near the western border, Altair the eastern border, and Deneb is about at midstream.  But you need to wait, of course, for it to get darker before you can see the Milky Way.   The boundaries of the Milky Way, as with any stream, are not sharp and regular. It tends to meander a bit with little pools of light and some deep, dark areas as well.

As the skies darken and your eyes continue to dark adapt, you should try to find three distinctive asterisms that will anchor both ends of the Milky Way, plus the middle.  If you have found Deneb, then you have the first star in the Northern Cross. In fact, you may want to see this as a stick figure of the constellation Cygnus the Swan.  In that case, Deneb marks its tail; the bar of the cross, its wings, and its long neck stretch out to the south as if it were flying down the Milky Way. To the north you should locate the “W” of Cassiopeia described in detail in our “Look North” post this month. And to the south, find the “Teapot,” which we described in more detail last month. Here’s a chart showing the whole sweep of that section of sky.

Click image for larger view. (derived from Starry Nights Pro screens hot.)

You can download a printer friendly version of this chart here.

Now, if it is about two hours after sunset and if you are in a location away from light pollution and, of course, are enjoying one of those crystal clear nights with dark-adapted eyes, then you also should be seeing the Milky Way. It only takes time and patience for you to trace it out – to see areas that are brighter than others – as well as some dark patches that don’t mean the absence of stars, but the presence of obscuring dust. But don’t think of the dust as getting in the way – think of it as star stuff – for what you are seeing in many sections of the Milky Way are the parts of our galaxy where new stars are being born. Relax and explore with your binoculars – start to absorb the majesty of millions – no billions – of stars!  If conditions are right – and you have a dark sky – it will look to the naked eye like faint clouds that get brighter as your eye traces them out from north to south.

And what is it you are seeing and why does it appear this way to you? That’s the important question. And this is where you have to do some mental gymnastics.

Think of our galaxy as a large pizza pie with extra cheese and goodies heaped in the center.  Now put yourself away from that center – perhaps one-half of the way towards one edge and buried down at the level of the crust. That’s a pretty good simulation of our galaxy and our place in it. You really need to get outside it – we can only do this in our imaginations – and look at it from that perspective. If we could get outside it, here’s approximately what we would see:

Two view of our Galacy, the Milky Way. The one on the left is from  aposition above it, the one on the right shopws you the galaxy edge-on.  This is a screen shot from the wonderful, free software, "Where is  M13."

The image on the left is how we think our galaxy would look if we could get above it and look down on it – like a big pinwheel of stars.  And what if you could see it edge on? Well, that’s the picture on the right. (This is a screen shot  from a wonderful – and free – software program called “Where is M13” that helps you understand where various objects really are in relation to us and the rest of the galaxy.)

OK – focus on the edge-on image – and note how really thin most of the galaxy is. It is about 100,000 light years across, but on average just 1,000 light years thick.

plane_view_MW

Now imagine yourself on a small dot (the Earth) rotating around that small dot in our image – the Sun. Do you see a lot of stars when you look “up” – that is, look in the direction of the words  “The Sun.”

No – in fact, if you look down, you don’t see many stars either – or for that matter, if you look in just about any direction there are relatively few stars visible to you. Why? Because the disc is just 1,000 light years thick, and most of the time you’re looking right through it the short way.  But  look along the plane of the galaxy – say  directly to the right or left – and what a difference!

Looking to the left you see many stars – in fact, a thin river of stars. Looking this direction, you’re looking through about 20,000 light years of star-filled space. We are looking along the plane, generally towards the outer rim, when we look at the W of Cassiopeia. Look along the plane to the right, and you see even more stars in a much wider river. Now you’re looking through about 30,000 light years of star-filled space and then right at the star-rich, galaxy core. And this, in a general way, is what we are doing when we look toward the Teapot of Sagittarius. That’s why the Milky Way is so much brighter and denser in that direction.

Not too difficult to understand – but this is only a rough sketch. As recently as 2008 scientists came up with a much different perspective of our galaxy than we had had up until then. Prior to the latest study, we thought the galaxy was a spiral with a bulge in the center and four main arms. Now they see it as a barred spiral – that is, the bulge in the center looks more like a bar that spills into two – not four – main spiral arms. There are other smaller arms in the spiral, and it all gets quite complex.

The problem, of course, is there is no way we can get outside our galaxy and look in. The distances are incredibly vast. Even if we could send a space probe at the speed of light, it would be thousands of years before it got outside our galaxy, took some pictures of us, and sent those pictures back. So we have to try to decide what the galaxy really looks like from the outside by studying it from the inside. Imagine, for a moment, being inside your body and trying to figure out what you look  like by what you can see from the inside, and you get an idea of the problem. Fortunately we can see other galaxies, and in later months we’ll be looking at one that looks a lot like what we think ours would look like if we could only get outside it and look back.

Meanwhile, relax – look up – and dream of all  the wonders that are out there and sending their messages back to you in the form of millions of tireless photons that have traveled thousands of years to reach your eyes and ping your brain on this dreamy August evening.  Harvest some of those photons by surfing the Milky Way with your binoculars. You will notice that in some areas it is quite dense and you may even discover some tiny, tight clusters of new stars – or a globular cluster of old stars, or even a little hazy patch where new stars are being born.  You need a telescope to see these well, but you can just discern some of them with binoculars, and with telescope or binoculars, what you really need to see with is your mind’s eye. Knowing what you are looking at is what brings this faint cloud alive and turns it into the awesome collection of billions of stars – and more billions of planets –  that it is.

Look North In August 2011 – All hail the Queen! (OK – the “W”)

Click image for larger view. (Derived from Starry Nights Pro screen shot.)

For printer friendly chart, download this.

The easily recognizable “W” of Cassiopeia (kass ee oh pee’ uh), the Queen, is well up in the northeast early on an August evening. Find it and you have a good starting point for tracing the Milky Way on south through Deneb.

When the “W” circles to a point high overhead, it will look like an “M,” of course, but that’s just part of the fun. Some people also see this asterism as forming the chair – or throne – for Cassiopeia. I like it because along with the Big Dipper, it nicely brackets the north celestial pole and provides another rough guide for finding Polaris. As the “W” rises, the Dipper plunges until it may be too close to the horizon for many to see. Both the stars of the Dipper and the stars of the “W” are 28 degrees from Polaris – roughly three fists.  When the Dipper gets on the horizon, the “W”  turns into an “M” directly above Polaris, so just measure three fists down from this “M” and you should be in the right region for finding the North Star.

Normally I do not find constellations or their associated myths too useful. Cassiopeia is an exception. Knowing the myth connected with this constellation will help you remember several important neighbors, and though we’ll meet these in the next two months, I’ll give you a “heads up” now and repeat the story when we meet the others. It goes like this:

Cepheus (King of Ethiopia)  and Cassiopeia (Queen of Ethiopia) have a beautiful daughter, Andromeda. Cassiopeia bragged so much about Andromeda’s beauty, that the sea nymphs got angry and convinced Poseidon to send a sea monster to ravage Ethiopia’s coast. To appease the monster, Cepheus and Cassiopeia  chained the poor child (Andromeda)  to a rock. But don’t worry. Perseus is nearby and comes to the rescue of the beautiful maiden, and they ride off into the sunset on Pegasus, Perseus’ flying horse! These five constellations – Cepheus, Cassiopeia, Andromeda, Perseus, and Pegasus – are all close to one another in the sky and all are visible in the fall, so we will meet them soon.

One of the bright stars of Cassiopeia is also a special aid to finding your way around the heavens, but in a more modern sense. It is part of an asterism known as the “Three Guides.”  These three bright stars are all very close to the Zero Hour Right Ascension circle in the equatorial coordinate system – the system that is roughly the celestial equivalent of latitude and longitude and is commonly used to give a permanent address to stars and other celestial objects. These three bright stars mark a great circle that goes through both celestial poles and the equinoxes and is known by the imminently forgettable name of  “equinoctial colure.”

Click image for larger view. (See note at end of post for source of this drawing.)

We’ll meet the other two stars in this asterism next month, but for now, simply take note of Beta Cassiopeia. It’s marked on our chart and is the bright star at that end of the “W” that is highest in the sky this month. Remember that this star is very near the “0” hour  circle, which you can visualize by drawing an imaginary line from Polaris through Beta Cassiopeia and eventually the south celestial pole. This line will cross the ecliptic at the equinoxes.  Of course, this helps only if you are familiar with the equatorial coordinate system! If that means nothing to you, then don’t clutter your mind with this right now.

The source for the drawing showing the equinoctial colure can be found here.

Look North In August – All hail the Queen! (OK – the “W”)

Click image for larger view. (Derived from Starry Nights Pro screen shot.)

For printer friendly chart, download this.

The easily recognizable “W” of Cassiopeia (kass ee oh pee’ uh), the Queen, is well up in the northeast early on an August evening. Find it and you have a good starting point for tracing the Milky Way on south through Deneb.

When the “W” circles to a point high overhead, it will look like an “M,” of course, but that’s just part of the fun. Some people also see this asterism as forming the chair – or throne – for Cassiopeia. I like it because along with the Big Dipper, it nicely brackets the north celestial pole and provides another rough guide for finding Polaris. As the “W” rises, the Dipper plunges until it may be too close to the horizon for many to see. Both the stars of the Dipper and the stars of the “W” are 28 degrees from Polaris – roughly three fists.  When the Dipper gets on the horizon, the “W”  turns into an “M” directly above Polaris, so just measure three fists down from this “M” and you should be in the right region for finding the North Star.

Normally I do not find constellations or their associated myths too useful. Cassiopeia is an exception. Knowing the myth connected with this constellation will help you remember several important neighbors, and though we’ll meet these in the next two months, I’ll give you a “heads up” now and repeat the story when we meet the others. It goes like this:

Cepheus (King of Ethiopia)  and Cassiopeia (Queen of Ethiopia) have a beautiful daughter, Andromeda. Cassiopeia bragged so much about Andromeda’s beauty, that the sea nymphs got angry and convinced Poseidon to send a sea monster to ravage Ethiopia’s coast. To appease the monster, Cepheus and Cassiopeia  chained the poor child (Andromeda)  to a rock. But don’t worry. Perseus is nearby and comes to the rescue of the beautiful maiden, and they ride off into the sunset on Pegasus, Perseus’ flying horse! These five constellations – Cepheus, Cassiopeia, Andromeda, Perseus, and Pegasus – are all close to one another in the sky and all are visible in the fall, so we will meet them soon.

One of the bright stars of Cassiopeia is also a special aid to finding your way around the heavens, but in a more modern sense. It is part of an asterism known as the “Three Guides.”  These three bright stars are all very close to the Zero Hour Right Ascension circle in the equatorial coordinate system – the system that is roughly the celestial equivalent of latitude and longitude and is commonly used to give a permanent address to stars and other celestial objects. These three bright stars mark a great circle that goes through both celestial poles and the equinoxes and is known by the imminently forgettable name of  “equinoctial colure.”

Click image for larger view. (See note at end of post for source of this drawing.)

We’ll meet the other two stars in this asterism next month, but for now, simply take note of Beta Cassiopeia. It’s marked on our chart and is the bright star at that end of the “W” that is highest in the sky this month. Remember that this star is very near the “0” hour  circle, which you can visualize by drawing an imaginary line from Polaris through Beta Cassiopeia and eventually the south celestial pole. This line will cross the ecliptic at the equinoxes.  Of course, this helps only if you are familiar with the equatorial coordinate system! If that means nothing to you, then don’t clutter your mind with this right now.

The source for the drawing showing the equinoctial colure can be found here.

Look north: It’s January – “W” is now an “M” and an ‘Engagement Ring’ tells true north

About one hour after sunset, look north and you should see a sky similar to the one shown in our chart – assuming you live at mid-northern latitudes. The height of Polaris, the North Star, will be the same as your latitude. Polaris stays put.  Everything else appears to rotate about it, so our view of all else changes in the course of the evening – and from night to night. It’s a good idea to check the north sky every time you observe to get a sense of how things are changing and to orient yourself.

Click image for larger view. Chart derived from Starry Nights Pro screen shot.

Click here to download a black-on-white (printer-friendly) version of this chart.

Of course Polaris – the “North Star” – is really not exactly north. It’s just a very good approximation of north. True north in the sky is the celestial north pole – a project of the Earth’s north pole – and it would be too much to hope that a bright star would be parked on this exact spot. But if you have binoculars, point them at Polaris on a dark, clear night – one where there’s no interference from the Moon  – and you should be able to see a neat little asterism called the “Engagement Ring” a crude rings of 7th and 8th magnitude stars with Polaris forming the diamond.  Look carefully and you’ll see this ring tells you the direction and distance to the true north celestial pole.

The North Celestial pole is to the north of Polaris(arrow) and the Engagement Ring asterism extends to the south of it. You can use the diameter of the Engagement ring as a rough guide as to how far away - in the opposite direction - the North Celestial Pole is from Polaris. Field of view here is about 4.5 degrees as seen with 15X70 binoculars, Lower power binoculars will show a larger field. Click for larger image. (Prepared from Starry Nights Pro screenshot.)

Of course, Polaris, as with the other stars, travels in a great circle around the pole.  But, the relationship between the Engagement Ring, Polaris, and the true North Celestial Pole, remains the same and south is defined as the direction away from the pole, north the direction towards the pole, and west is the direction the stars appear to rotate. For more on finding directions in the night sky, see this post. See the movie below, made with Starry Nights Pro software, to  see how Polaris and the Engagement Ring rotate around the celestial north pole in the course of 24 hours.

High above Polaris the familiar “W” of Cassiopeia has completed its transition to an “M” as its stars  role  around the pole.  Off to the northwest we see two bright guidepost stars, Vega and Deneb. To the northeast we have brilliant Capella.  Don’t be alarmed if you can’t pick out most of the Little Dipper stars – four of them are fourth magnitude or fainter and besides, they are below Polaris this month making them even more difficult to see since you are looking through more atmosphere when stars are low. I see them only when it has become fully dark – about 90 minutes after sunset – and when my eyes have had 10-20 minutes to dark adapt.