• Choose a month

  • Rapt in Awe

    My Journey through the Astronomical Year

    Think of this as a "companion text" to this, the main web site. Not required reading, butI hope you'll find it interesting and helpful.

Look Southeast in July 2014 – Colorful Stars and Planets, Great Asterisms – even a Great Constellation!

We’re going to cheat a little this month and look quite a bit south of east, rather than due east. The reason is we have some wonderful stars getting as high as they get if we look that way – AND we have two bright planet and colorful planets, Saturn and Mars which make for some interesting comparisons with nearby stars. We also have a couple of really cool asterisms and even a great constellation.

I’m not a big fan of constellations. Most don’t look anything like their names imply; some are quite obscure; and many simply can’t be seen in typical suburban skies these evening because of light pollution. Scorpius is an exception. It looks like the Scorpion of its name – a truly beautiful constellation with its graceful, curving tail. What’s more, many of its brighter stars actually do hang out together – they are not just an accident of our line of sight.

The Scorpion as Bayer saw him in his 1603 illustrated star atlas, Uranometria. Click for a much larger image. (Used by permission from the Linda Hall Library of Science, Engineering & Technology.)

It dominates our southeastern sky in July, just as the Summer Triangle – a terrific asterism, dominates our eastern sky this month. And we have two fascinating new “guide” stars – the intriguingly close and rapidly spinning Altair – and the incredibly huge and red Antares that is right at the heart of the Scorpion!

Antares begs comparison with Mars – both being red. But Mars is also very, very close to a bright blue star, Spica. Mars will be just a bit brighter than either of these comparison stars. Saturn –  between Mars and Antares and also very bright, has a yellowish hue.

But the real treat at this time of year remain these southern stars. They never get real high and from mid-nothern latitudes we only get a couple hours on a summer night when they are really well in view above the southern horizon. To top it all off the Milky Way runs from Deneb in the  Summer Triangle to the tail of Scorpius,but you have to wait a couple hours after sunset before this comes out.

Let’s take a look at the chart, then examine Scorpius along with its quaint little companion, a very real looking teapot complete with “steam” coming out of its spout! Wow! Summer nights may be short, but they sure offer some nice visual treats!

Oh - about that "teapot." We won't discuss it, but you can clearly see it tagging behind the scorpion. If you have real clear skies, the Milky Way is beautiful in this area and looks like steam rising from the teapot. More on this next month. Meanwhile, click image for a larger version. (Developed from a Starry Nights Pro screen shot. )

Click to enlarge! This chart covers a bigger section of sky then we usually show. Vega, for example,  will be six fists up. Oh – about that “teapot.” We won’t discuss it, but you can clearly see it tagging behind the scorpion. If you have real clear skies, the Milky Way is beautiful in this area and looks like steam rising from the teapot. More on this next month.  (Developed from a Starry Nights Pro screen shot. )

First up is the Summer Triangle – it’s an asterism that you can’t miss, and it will grace our evening skies right up into early winter. If you’ve been following for a few months, you’ve already met its lead star, brilliant Vega. And last month we were introduced to Deneb on the other corner. In fact, we saw that we could make a quite impressive Northern Triangle out of Deneb, Vega, and Polaris. But far better known than that asterism is the Summer Triangle shown above of Vega, Deneb, and Altair.

Altair is hard to miss. It is the brightest star low in the east early on a July evening, but it is also distinctive because it has two reasonably bright companions, close on either side, that form a straight line with it. This is appropriate because it’s not hard to see Altair and those two companions as representing an eagle in flight, and that’s good because they are the major stars in a constellation known as Aquilla, the Eagle.

Altair is white, much like Deneb and Vega, and is even closer to us than Vega. Vega is 25 light years away, Altair just 16. That’s in contrast to Deneb, which you may recall is an astounding 1,425 light years (at least)  from us – astounding because even at that distance it is almost as bright as its much closer companions and some experts believe it is much more distant.

Altair also distinguishes itself by spinning incredibly fast. It takes our Sun almost a month to complete a rotation on its axis. Altair, almost twice as large as our Sun, spins once on its axis in just 10 hours. Why, I don’t know, but it’s one more reminder of how these stars, which all look pretty much the same to us because they’re so far away, all have their special traits that distinguish them as individuals.

The most obvious special trait for Antares, our other new guide star this month, is its redness – and it’s one of only four guide stars that is quite close to the ecliptic – the path of the planets. That means that reddish Mars comes close, sometimes, to reddish Antares, and that’s appropriate because the name “Antares” actually means “like Mars.” However, science tells us something else about Antares. It is huge. I mean BIG.

Get out your calculator and do a little simple math. (OK, I’ll do the math, but really – this is simple, and I think you would appreciate the numbers much more if you did the calculations yourself.) One possible source of confusion:  To visualize a sphere I use its diameter. To actually calculate things I need the radius – since a radius is half of a diameter  you’ll find me jumping back and forth between these two terms – don’t let it confuse you.)

So try this. Start with something manageable, like the Earth. It’s about 8,000 miles in diameter and that’s a number that’s fairly easy to imagine. Let’s reduce Earth to a ball 2 inches in diameter. It would have a radius, then, of one inch.

Now let’s make a scale model Sun to go with our Earth. That’s easy. The radius of the Sun is 109 times the radius of the Earth. That means the Sun will have a radius of 109 inches – roughly 9 feet. So now we have a one-inch Earth and a 9-foot Sun. So our scale model has two balls – one two inches in diameter to represent the Earth and one 18 feet in diameter to represent the Sun.

That certainly should tell you that the Sun is a lot bigger than Earth, but my problem is, these linear measures don’t give us a really good sense of the size difference. We need to visualize spheres in terms of volume. We can get a rough approximation of the  volume  of a sphere by simply cubing the radius and multiplying it by 4. If we do this for our scale model Earth we have (1 x 1 x 1) x 4 – or four cubic inches. Now to calculate the volume of our scale model Sun – in cubic inches – we multiply 109 x 109 x 109, then multiply that by 4. Wow! Well, if you tried it on your calculator I hope you said “Wow!” You should get 5,180,116. That means you can fit well over one million Earths in our Sun! That to me is a lot more impressive than the linear measure where we find the diameter of the Sun is about 109 times the diameter of Earth.

Now let’s do a similar exercise with Antares. Antares has a radius more than 800 times the Sun. Do the math. Our scale model Sun has a radius of  9 feet – our scale model Antares will have a radius in feet of 9 x 800. Man, that’s big. About 7,200 feet!  (Just remind yourself that a mile is 5,280-feet.)  So now we have three models – a 2-inch diameter Earth, an 18-foot diameter Sun, and a 14,400-foot diameter Antares – that last is approaching three miles!

Don’t bother to calculate the volume. Unless you use scientific notation, your calculator probably won’t handle it. But you get the idea. That little dot of red light we call Antares is B-I-G. And don’t forget – on this same scale the huge planet you are standing on is just 2-inches in diameter.

Here’s a graphic representation courtesy of Sakurambo:

Notice the artist didn’t even attempt to represent the Earth on this scale!

Think of it this way. If Antares were our star, both the Earth and Mars would be orbiting inside it!

That’s huge – even bigger than Deneb – which we noted last month was a “supergiant” – the same class that Antares belongs in. But Deneb would only reach about halfway to Earth – Antares would go past both Earth and Mars. Deneb, however, is a very young, very bright, very hot star, which is why it shines so brightly from such a great distance. Antares is much closer – about 600 light years vs at least 1,425 for Deneb. But Antares is old – a star in its dying stages, and is large and bright because it is so bloated. It really is quite cool as stars go – that’s why it appears red to us. But it has such a huge surface area that even from a distance of 600 light years it appears bright to us – a bit brighter in our sky than Deneb, actually.

So let’s briefly consider these four guide stars together – Vega is our “standard” star – white, about the size of the Sun, and quite close at 25 light years. Altair has some unusual features, but is still rather normal as stars go. Deneb is distinguished by being large and hot; Antares by being even larger, but relatively cool.

Vital stats for Altair (AL-tair), also known as Alpha Aquilae:

• Brilliance: Magnitude .77; its luminosity is the equal of 11 Suns.
• Distance:16.8 light years
• Spectral Types: A, main sequence
• Position: 19h:50m:47s, +08°:52′:06″

Vital stats for Antares (an-TAIR-ease), also known as Alpha Scorpii:

• Brilliance: Magnitude 1.09; its luminosity is the equal of 65,000 Suns.
• Distance: 600 light years
• Spectral Types: M, supergiant
• Position: 16h:29m:24s, -26°:25′:55″

Events, June 2014 – Bright Lights Along the Ecliptic this Month

This is a great month to become familiar with the ecliptic in our sky. The ecliptic is the plane of our solar system where you will always find the Sun, Moon, and Planets.

Finding it sounds simple – and it is if you pick your time and date. The problem is it changes constantly because the Earth is tilted on its axis and revolving around the Sun.  I should stress one more thing – the ecliptic is not the path you will see the Sun, Moon, and planets take across the sky in a given night – it is the path they will follow as they change position over days, weeks, and even years. How quickly an object follows this path depends on how close it is to us – the Moon makes it completely around the ecliptic each month, the Sun each year – but a distant planet, such as Saturn, takes about 30 years.

You can trace the portion of this path visible about an hour after sunset on a June night in 2014. For the chart below I chose June 13th simply to include a nearly full Moon in the picture. It will, of course, change position each night – but the planets will stick pretty close to these general spots all month. So go out an hour or so after sunset and start your search by looking to the northwest for brilliant Jupiter. It will be brighter than any star, or any of the other planets and only about 10 degrees above the horizon – ten degrees can be measured by holding your closed fist at arms length.

Jupiter thus achors the western end of the ecliptic. We’ll move eastward to trace out the rest of it.

Click on this chart to get a much larger version. (Prepared from Starry Nights Pro screen shot.)

Click on this chart to get a much larger version. (Prepared from Starry Nights Pro screen shot.)

 

Up above Jupiter are the famous Gemini Twins – the nearer and slightly brighter one is Pollux, the other is Castor.

Turn a bit south of west you will find the bright star Regulus. While it outshines most other stars visible tonight, it is just in between Castor and Pollux in brightness and is about 30 degrees above the horizon – three fists.

Next on our list is the red planet Mars – the second brightest object on our chart. If you’re not detecting the rusty redness of it, try looking at it in binoculars. Then compare it with the next bright star on our chart, Spica. Spica is a  little lower than Mars an quite a bit dimmer. (Mats is four fist high, Spica about three and half.) Spica, however, is a very hot – and thus very blue – star. Look at the difference in color between it and Mars.

Moving eastward you’ll find Saturn, whose beautiful rings will show in even a small telescope. However, to the naked eye and binoculars Saturn simply looks like a bright star – not as bright as Mars, but certainly brighter than Spica. It has a pale, yellowish hue.

Continuing to the east is Antares, just 15-degrees – a fist and a half – above the horizon.  It’s name means “rival to Mars” and for good reason – it is a classic, red star, rivaling the color of Mars.  Again, contrast its color with that of Spica and Mars.

Oh – high overhead is the bright star Arcturus. It’s about as bright as Saturn and nearly 70 degrees above the horizon – seven fists.  Do you remember how to find Arcturus? You “follow the arc” of the Big Dipper’s handle – now high in our northern sky, to Arcturus, then “drive a spike” to Spica.

What else is going on this month?

Well, two dates to keep in mind:

The Summer Solstice is June 21 at 6:57 am EDT – and thus begins the longest day of the year.

On June 24 a thin crescent Moon will be very close to the brightest of planets, Venus in the eastern sky about an hour before sunrise. Should be a pretty sight and a nice picture opportunity.

Look East! Drive a Spike to Spica (pronounced Spy-ka) and two planets in May 2014!

If you followed “the arc” of the Big Dipper ‘s handle last month to find Arcturus, then you “drive a spike”  this month to find Spica –  pronounced Spy-ka – plus Mars and Saturn. It’s like taking a long, cool slide from the Dipper – and the “Arc-to-Arcturus” and “Spike-to-Spica” relationships hold true as long as these stars are in our skies – which will be right through August.

Here’s how it looks – remember: look east  starting about an hour after Sunset.  Arcturus, Spica, and Mars should all be visible as the first stars emerge, but Saturn will have to wait a bit. At the start of the month it may be too low until about two hours after sunset – but each night it rises earlier and earlier. On May 10 it is in opposition, rising as the sun sets.

Click to enlarge. (Prepared from Starry Nights Pro screen shot.)

Click to enlarge. (Prepared from Starry Nights Pro screen shot.)

Click here to download a printer-friendly version of this chart.

While the Dipper is easy to recognize, its stars are second magnitude – bright, but easily out-shone by the triangle of Arcturus, Mars, and Saturn. Even Spica, almost exactly magnitude 1, is brighter than the Dipper stars. Still, the Dipper stars will be very high in the northeast and easy to spot as it gets dark.  The brightest star in this section of the sky is Arcturus at magnitude minus 0.04. (Remember, the lower the magnitude number, the brighter the object – minus magnitude are brighter still.) The next brightest star you’ll see is over to your left, low in the northeast – Vega at magnitude 0.04. So Vega is barely on the plus side of  magnitude  zero and Arcturus is barely on the minus side, a difference that is next to impossible to detect with the eye. This year both these stars will be out shone by Mars, almost magnitude -1,  and Saturn is just a tad dimmer than Arcturus and Vega, though about a full magnitude dimmer than Mars.  Together these  five –  Mars, Arcturus, Vega, Saturn, and Spica will give you a good sense of the magnitude scale. In fact, throw in Polaris – the North Star, which is almost exactly magnitude 2 and you have a range of four magnitudes represented – quite a brilliant display.

The color contrast is exceptional here too. As these stars and planets get higher in the sky, you will notice that Mars is definitely reddish, Spica is a rich blue, while Saturn has a yellow tint.

We dealt with Arcturus last month. Saturn will be in our sky all night and as always is a treat for the small telescope user. From a naked eye perspective,  it’s fun to remember that the name “planet” means “wanderer” in Greek, but all “wanderers” are not created equal. Mars, Venus, and Mercury move  so quickly in our night sky that you can easily mark their changes over a period of a few days -certainly a week.  Saturn is much more sluggish.

Saturn changes position over the course of an entire year by roughly 12 degrees.  To see this in the sky , find Saturn. Hold your fist at arms length so Saturn is just below it. Just above your fist is where Saturn was last year. Put Saturn on top of your fist and just below your fist is where it will be next year. So how long will it take Saturn to get around the sky to roughly the same position? Well, 360/12 = about 30 years!  Now if you think a moment, the Moon takes about 30 days to get around our sky – and that means the Moon moves each day about 12  degrees –  the same apparent distance covered by Saturn each year.  All of which should tell you that it would be reasonable to assume Saturn is much farther away from us than the Moon – which, of course, it is.

None of this is rocket science, but I find it interesting to contemplate as I look up and see Saturn. I measure that distance it will travel in the next year and in my mind’s eye I stand above the Solar System and I see a long thin pie slice reaching from me to Saturn’s distance orbit and this helps me keep things in perspective – gives me a better intuitive feel for the neighborhood in which we live.  OK – for the record Saturn is moving at about 22,000 miles an hour, Mars about 54,000 miles an hour in a much shorter orbit, and we’re whipping right along close to 67,000 miles an hour – and we don’t even feel the wind in our face! Oh – and Saturn’s actual orbital period is 29.458 years.

On to this month’s new guidepost stars!

Vega and Spica are each fascinating stars, but let’s start with Vega. Shining brightly not far above the northeastern horizon as the evening begins, Vega comes about as close to defining the word “star” as you can get. In “The Hundred Greatest Stars” James Kaler calls it “the ultimate standard star” because its magnitude is about as close to zero as you can get  and its color is about as close to white as you can get. (If you’re one of those who assumed all stars are white, you’re forgiven. Individuals vary in their ability to see different colors in stars and for everyone the color differences are subtle – in fact I think of them as tints rather than colors. )

It’s hard not to be attracted to Vega when you read Leslie Peltier’s wonderful autobiography, “Starlight Nights.” Vega was central to his astronomical observing throughout his career because he began with it when he first started reading the book from which I got the idea for this web site, “The Friendly Stars” by Martha Evans Martin. Peltier wrote:

According to the descriptive text Vega, at that very hour in the month of May, would be rising in the northeastern sky. I took the open book outside, walked around to the east side of the house, glanced once more at the diagram by the light that came through the east window of the kitchen, looked up towards the northeast and there, just above the plum tree blooming by the well, was Vega. And there she had been all the springtimes of my life, circling around the pole with her five attendant stars, fairly begging for attention, and I had never seen her.

Now I knew a star! It had been incredibly simple, and all the stars to follow were equally easy.

Vega went on to be the first target of the 2-inch telescope he bought with the $18 he made by raising and picking strawberries. (This was around 1915.) And Vega became the first target for every new telescope he owned until his death in 1980. If you still don’t know a star, go out and introduce yourself to Vega early on a May evening. Even without a plum tree to look over, you can’t miss her! And once you’ve done that you’re well on your way to making the night sky your own.  (And yes, Vega is the star from which the message comes in Carl Sagan’s book/movie “Contact.”)

Vital stats for Vega, also known as Alpha Lyrae:

• Brilliance: Magnitude .03 ; a standard among stars; total radiation is that of 54 Suns.
• Distance: 25 light years
• Spectral Type: A0 Dwarf
• Position: 18h:36m:56s, +38°:47′:01″

Spica, a really bright star – honest!

Spica is truly a very bright star, but the numbers you may read for its brightness can have you pulling your hair. That’s because there are at least four common ways to express the brightness of Spica and other stars, and writers don’t always tell you which way they’re using. So let’s look at these four ways and see what they mean for Spica.

The first is the most obvious. How bright does it look to you and me from our vantage point on Earth using our eyes alone? We then assign it a brightness using the magnitude system with the lower the number, the brighter star. (For full discussion of this system, see “How bright is that star?”)

By this measure Spica is 16th on the list of brightest stars and is about as close as you can come to being exactly magnitude 1. (Officially 1.04) Though I should add here that the number really marks the midpoint of a magnitude designation – that is, any star that is in the range of magnitude .5 to magnitude 1.5 is called “magnitude 1” and so on for the other numbers on the scale.

But that scale talks about what we see. It doesn’t account for distance. Obviously if you have two 60-watt light bulbs and one is shining 6 feet away from you and the other 1,000 feet away, they are not going to look the same brightness. But if we put them both at the same distance – say 100 feet – they would look the same. So it is with stars. To compare them we pretend they all were at the same distance – in this case 10 parsecs, which is about 32.6 light years. Put our Sun at that distance and it would be magnitude 4.83. (That’s about as faint as the fainest stars we see in the Little Dipper.) We call that its absolute magnitude.

The absolute magnitude for Spica is -3.55 – not quite as bright as dazzling Venus.

Wow! That’s pretty bright compared to our Sun! Yes it is. Sun 4.83; Spica -3.55. Don’t miss the “minus” sign in front of Spica’s number! That means there’s more than eight magnitudes difference between the Sun and Spica. And that relates to the next figure you are likely to see quoted. Something that is called its luminosity. Luminosity compares the brightness of a star to the brightness of our Sun. Unfortunately, the term is often misused – or poorly defined. Thus in the Wikipedia article I just read on Spica it said that “Spica has a luminosity about 2,300 times that of the Sun.” Yes, but what does that mean? It means that if we were to put the two side by side, Spica would appear to our eyes to be 2,300 times as bright as our Sun.

That is bright! But there’s more, much more. Spica is also a very hot star – in fact one of the brightest hot stars that we see with our naked eyes. But we miss most of that brightness because most of it is being radiated in forms of energy that our eyes don’t detect. In the case of Spica, that is largely ultraviolet energy. The Wikipedia article actually listed Spica’s luminosity twice, and the second time it gave it as “13,400/1,700.”

Oh boy – now we have Spica not 2,300 times as bright as the Sun, but more than 13,000 times as bright. Now that IS bright – but is it right? Yes! So why the difference? Again, the first “luminosity” given – 2,300 times that of the Sun – is measuring only what we can see with our eyes. The second is measuring total amount of electromagnetic radiation a star radiates and is properly called the “bolometric luminosity.” And why two numbers for that last figure? 13,400/1,700? Because while Spica looks like one star to us, it is really two stars that are very close together and one is much brighter than the other. So what we see as one star is really putting out energy in the neighborhood of 15,100 times as much as our Sun.

This can get confusing, so I suggest you remember three things about Spica.

1. It defines first magnitude, having a brightness as it appears to us of 1.04.

2. It is really far brighter (magnitude -3.55), but appears dim because it is far away – about 250 light years by the most recent measurements.

3. It is very hot – appearing blue to our eyes – and because it is very hot it is actually radiating a lot more energy in wavelengths we don’t see, so it is far, far brighter than our Sun.

Spica is the brightest star in the constellation Virgo, one of those constellations where you can not really connect the dots and form a picture of a virgin unless you have an over abundance of imagination. Besides, the remaining stars are relatively faint. That’s why we focus on the bright stars and sometimes those simple patterns known as “asterisms” and use them as our guides.

Vital stats for Spica, also known as Alpha Virgo:

• Brilliance: Magnitude 1.04; a close double whose combined radiation is the equal of 15,100 Suns.
• Distance: 250 light years
• Spectral Types: B1,B4 Dwarfs
• Position: 13h:25m:12s, -11°:09′:41″

Guideposts reminder

Each month you’re encouraged to learn the new “guidepost” stars rising in the east about an hour after sunset. One reason for doing this is so you can then see how they move in the following months. If you have been reading these posts for several months, you may want to relate Spica to two earlier guidepost stars with which it forms a right triangle, Arcturus and Regulus.

Once you have identified the Right Triangle, note carefully the positions of Spica and Regulus. They pretty much mark the “ecliptic.” This is the path followed by the Sun. Also, within a few degrees north or south of it, you will find the planets and the Moon. That’s well illustrated in 2014 by the presence of both Saturn and Mars, very near the ecliptic, as noted on our chart.

Arcturus and Regulus are not the only guidepost stars and asterisms in the May sky. Again, if you have been reading these posts for several months, be sure to find the stars and asterisms you found in earlier months. Early on a May evening these will include, from east to west, the following: Arcturus, Spica, Saturn, Leo’s Rump (triangle), The Sickle,  Mars, Regulus, the Beehive, Procyon, Sirius, Pollux, Castor, and in the northwest near the horizon, Capella, and the Kite. Venus will be a bright evening “star” in the west, and if you look early in the month you may catch a glimpse of Sirius and Betelgeuse before they set.

Events April 2014: Mars, the Moon, and the Earth’s Shadow – Yes, a Total Lunar Eclipse !

 

anatomy-of-a-lunar-eclipse-graphic

Love those Lunar eclipses, but who was in charge of the scheduling for this one? Some insomniac like me, no doubt, for on the East Coast of the USA where I live this thing really doesn’t pick up steam until about 2 am April 15, then continues until near when the Moon sets just before dawn. The West coast residents get a somewhat more timely view.

Here’s the schedule for those in the Eastern Daylight Time zone on the morning of April 15:

1:57 am partial eclipse begins

3:06 am totality begins

3:45 am mid-eclipse

4:25 am totality ends

5:33 am partial ends

The Moon sets about the time the Sun rises, which varies according to location. (Eclipses happen at the same time all over the world – but of course what time that is for your location depends on your time zone – and for some, the Moon simply won’t be in your sky during the eclipse hours.  For a complete guide to where this eclipse can be seen and when for your location, see the NASA eclipse pages.

There’s an incredible NASA eclipse Javascript on this page that delivers all sorts of eclipse data and time for anywhere in the world – however, I did notice that the times were  standard – so you need to adjust for daylight savings if relevant.

What adds a special touch to this eclipse is that Mars will be pretty close to the Moon from the time the Moon rises near sunset. I always like watching the fainter stars come out as the Moon goes into total eclipse, then slowly vanish as it comes back. But with this eclipse, Mars will provide a special treat with it’s ruddy hue shining brighter than any of the nearby stars – though Arcturus and Spica will both rival it.  Here’s a chart for my location – the same relationships will apply anywhere, but those farther west will see the orientation of the chart shift since the Moon and stars will be higher in their sky at this point.

 

eclipsed_moon

Click image for larger version. (Prepared from Starry Nights Pro screen shot.)

 

The Scorpion should be beautiful on the southern horizon. For me the Moon is about 22 degrees above the southwest horizon at this point. If you have trouble finding it – eclipses vary on how dark they get, then simply look for Mars and Spica – if you get Spica in binoculars the Moon will be in the same field about 2 degrees east of it.

April Planet Parade

Click image for larger view. (Made from screen shot of Starry Nights Pro.)

No, you can’t see the Moon – it’s eclipsed! (Actually, it can be quite red and fairly easy to see – or it can be quite dark and difficult to see during totality. ) Click image for larger view. (Made from screen shot of Starry Nights Pro.)

Jupiter is high in the western sky all month, setting in the wee hours of the morning; by the end of the month it sets closer to midnight, but is still brighter than any star or any other planet in the evening sky.

However, Mars rivals Jupiter, taking over in the eastern sky in the early evening hours and remaining visible all night throughout April. It’s in retrograde motion this month, which means it appears to climb a bit higher in our sky as the month goes on, moving west against the background of stars. This is the best opportunity for two years for telescope users to get a good look at Mars.

Saturn gets high enough to view in the eastern sky about three hours after sunset at the start of the month, and two hours after sunset by the end of the month.

Venus is best seen low in the east about 45 minutes before sunrise, and on April 25th has a nice pairing with the crescent Moon. While Jupiter is brighter than any star, Venus is two magnitudes brighter than Jupiter, so it shows up well even though it is well into morning twilight before it is high enough to see easily. I like finding pretty spots to try to capture the crescent Moon, Venus, and foreground landscape  in twilight.  Here’s a shot I got at the Town Farm in Westport MA when there was a similar  arrangement of the Moon and Venus in March 2014.

venus_moon_farm

Click image for larger view.

 

A Meteor Sprinkle

The annual Lyrids meteor “shower” is not nearly as intense as the Perseids in August or the Geminids in December, but if the night is clear it could be fun. It is supposed to peak (roughly 20 meteors per hour) on April 23 when a  waning crescent Moon will rise after 3 am and start to interfere some.

I must admit that with a shower like this I take it casually. That is, I go out and observe other things, but I keep an eye out for meteors, and if I see one, I try to trace its path backwards to see if it points in the general direction of the constellation Lyra – if it does, I assume it’s part of the shower and not a random meteor. You might see a shower meteor a few days before or after the peak, and it might come at any time of night in any part of the sky, but if I were going to pick an hour to keep a sharp eye out for Lyrids, it would be between 2 am and 3 am on the morning of April 23.

The Lyrids are believed to be remnants of Comet Thatcher, which orbits the Sun about every 415 years.

 

 

Look East in April 2014 – take a simple slide to the World’s Fair Star and bump into Mars as a bonus!

 

uhhh

The name”Arcturus” derives from Ancient Greek and means “Guardian of the Bear.” It is the brightest star in the constellation Boötes. Click image for a much larger version. (Prepared from Starry Nights Pro screen shot.)

 

Click here to download a printer-friendly version of the above chart.

Arcturus isn’t universally known as the “World’s Fair Star,”  but  it should be.  Its light bridged two World’s Fairs, making an astronomical link between the one in 1893  and a second in 1933 – both held in Chicago.  It’s intriguing that  the general public was excited enough about science – in the middle of the Great Depression – to make such a link attractive to the Fair’s promoters. Light from Arcturus  – believed at that time to be 40 light years away – was captured by the 40-inch refractor at Yerkes Observatory and its energy used to turn on the lights for the 1933 Fair.

This put the public spotlight not only on Arcturus, but it raised consciousness about the vast distance between us and that star, since the light being used had started its journey during the 1893 Fair and arrived just in time to start the next Fair. When you know light can circle the Earth more than seven times in a single second, you start to understand just what an incredible journey that was.

Of course Arcturus has many other distinctions. For one thing, it makes a perfect connection with the best known asterism in the sky, the Big Dipper.  To find it, all you have to remember is “follow the arc to Arcturus.

And in 2014 you get a bonus – keep following that arc and you’ll quickly come toa slightly brighter “star,” the planet Mars! More about that in our “events” post for April, but I did add Mars to this month’s “look east” chart. It forms a nice triangle with Arcturus and Spica, another bright star we’ll meet next month as it’s quite low this month.

Getting back to Arcturus – another way to remember where to find Arcturus is its name, derived from ancient Greek, which can be translated as “Bear Watcher.”  That’s because Arcturus looks like it’s keeping an eye on the “Great Bear,” Ursa Major, as both circle the northern pole.

You can also think of the magnitude system by which we rate the brightness of stars as starting near Arcturus. At magnitude minus .04 it’s about as close to zero as you can get – the minus sign indicating it is a tad brighter than zero.  Its absolute magnitude is also pretty close to zero since absolute magnitude is defined as how bright a star would be if it were about 33 light years from us, and by modern measurement Arcturus is now believed to be about 37.6 light years from us.  That makes its absolute magnitude -.29.

Arcturus has the distinction of being the brightest star in the northern celestial hemisphere, but this is splitting hairs in several ways. It means it’s the brightest star north of the celestial equator. Sirius, now over in the southwest, is obviously  brighter. But Sirius is south of the celestial equator. Both stars are located close enough to the celestial equator so they can be seen from most places on Earth.

It’s interesting to note, however, that Mars is outshining it this month- by quite a bit. In round numbers, Arcturus is zero, Mars is minus 1.2 and Sirius, setting in the est early on April evenings, is minus 1.5.

But Arcturus (-.04) also wins the “brightest star in the northern hemisphere” distinction by another hair. Remember that the lower the magnitude number, the brighter the star. Both Vega (.03) and Capella (.08) are north of the celestial equator, and the difference in brightness between Arcturus (-.04), Vega (.03), and Capella (.08) is roughly a tenth of a magnitude.  For practical purposes, they all look the same.  But in practical terms, making the comparison by naked eye is – well –  very impractical. Capella is currently fairly high in the northwest. But next month, when Vega is high enough in the east to see well,  Capella will be rather low in the northwest. At that time Arcturus should look brighter – but its actual brightness will be aided by the fact that it is high over head at that time, so you are seeing it while looking through a lot less air than you will be when looking at Vega or Capella. Besides, visually trying to compare stars that are this far apart in our sky is next to impossible since you have to look away from one to see the other. I simply think of all three as magnitude zero and leave the hair splitting to the scientists and their instruments.

Oops – we interrupt this program for a bulletin from 1907!

Yes, having just written how impractical the naked eye comparison is, I found this passage in “The Friendly Stars” by Martha Evans Martin, a book that was published more than a century ago:

Arcturus and Capella are so nearly equal in brightness that astronomers differ as to which outranks the other, even when they measure  their light with a supposedly accurate  instrument and a trained eye. To my own eye Arcturus outshines Capella, and on asking various inexperienced persons for off-hand opinions as to the relative brightness of the two stars, I have invariably had an answer in favor of Arcturus. The best authorities, however, make Capella a shade brighter.

Oh my! And now with 100 years of scientific progress, the verdict is that Martha Evans Martin and her causal observer friends were correct – and the “best authorities”  wrong. Arcturus is the brightest.  So much for my idea that you can’t tell the difference with the naked eye! Give it a try and see what you think. (You can find a chart for Capella and more details about that star  in this post.) Since we’re ranking stars, however, Arcturus is actually fourth on the list of brightest stars – two others that are ahead of it, Canopus and Rigel Kentaurus, are not seen by observers in mid-northern latitudes. Sirius, of course, is.

While Arcturus radiates a lot of energy, much of it is not in the form of visible light. It has what’s known as a “peculiar spectrum” and radiates much of its energy in the infrared portion of the spectrum.  This means that to our eyes it doesn’t look as bright as it really is.

Orange-ish Arcturus is 215 times as bright as our Sun and 25 times the Sun’s diameter. (Image courtesy of  Windows of the Universe.)

One more deception of sorts: This brightness is not because Arcturus is so big – well , yes it is, but not big in terms of the amount of stuff in it, but big in terms of surface area. If you’re measuring the amount of stuff that makes up Arcturus – its mass – it is about the same size as our Sun. But Arcturus has a much greater surface area, so think of it as a hugely bloated version of our Sun. (Keep that in mind when you look at the comparison sketch above.) It is a much older star and is now going through its red giant phase, something our Sun will probably do several billion years from now, burning the Earth to a cinder in the process.

Hmmm . . . to get an idea of how much impact that large surface area has, if you put our Sun out near Arcturus it would be barely visible to the naked eye – and then under truly dark –  not light polluted – skies.

Vital stats for Arcturus, also  known as Alpha Bootes:

•    Brilliance: Magnitude  -.04, brightest star in the celestial northern hemisphere; shines with the luminosity of 215 Suns.

•    Distance: 37 light years

•    Spectral Type: K1 Giant

•    Position: 14h:15m:38s, +19°:10′:5

Guideposts reminder

Each month you’re encouraged to learn the new “guidepost” stars and asterisms rising in the east about an hour after sunset. One reason for doing this is so you can then see how they move in the following months. So if you have been following – even if this is just your second month – look for the previous guidepost stars and asterisms that you have learned and that are still with us in April. Here’s the list from east to west.

  • Arcturus
  • Leo’s Rump  (triangle)
  • The Sickle
  • Regulus
  • the Beehive
  • Procyon
  • Sirius
  • Pollux
  • Castor
  • Betelegeuse
  • Orion’s Belt
  • Rigel
  • Capella
  • the Kite
  • Aldebaran
  • the Winter Hexagon
  • the Pleiades 

Look East! Drop off the slide to Spica and land on Saturn in May 2013!

If you followed “the arc” of the Big Dipper ‘s handle last month to find Arcturus, then you can do the same this month to find Spica – it’s like taking a long, cool slide from the Dipper – and if you hop off just before just before the end, this year you’ll land on Saturn!

Here’s how it looks – remember: look east  starting about an hour after Sunset.  But don’t wait too long – as the night goes on, everything will appear to rise and after a few hours this chart won’t be much help.

stuff

Start with the Big Dipper, high overhead tot he east. Following the arc of its handle, slide down to the brightest star int he east, Arcturus. Soften your slide and keep going and you’ll come to another bright star, Spica. Hopwever, if you hop off the slide just before getting to Spica, you’ll land on Saturn – which will be brighter than Spica, but not quite as bright as Arcturus.

Click here to download a printer-friendly version of this chart.

While the Dipper is easy to recognize, its stars are second magnitude – bright, but not the brightest. The brightest star in this section of the sky is Arcturus at magnitude zero. (Remember, the lower the magnitude number, the brighter the object.) The next brightest star you’ll see is over to your left, low in the northeast – Vega. In fact, Vega is magnitude  zero as well and the difference between it an Arcturus is next to impossible to detect with the eye. And this year we can say the same about Saturn  – it is over near  Spica and will outshine it by just a tad and be nearly as bright as Vega and Arcturus. All of these – Arcturus, Vega, Saturn, and Spica will be brighter than any of the Dipper stars.

As these stars get higher in the sky, you will notice that Spica is a rich blue, while Saturn has a yellow tint. About an hour after sunset Vega will be the lowest at about 20-degrees above the horizon – two fists held at arms length. Saturn will be about 23 degrees above the horizon, Spica about 30 degrees, Arcturus 47 degrees and Alkaid, the star at the end of the big Dipper’s handle, about 64 degrees.

We dealt with Arcturus last month. Saturn will be in our sky most of the night and as always is a treat for the small telescope user. From a naked eye perspective,  it’s fun to remember that the name “planet” means “wanderer” in Greek, but all “wanderers” are not created equal. Mars, Venus, and Mercury move  so quickly in our night sky that you can easily mark their changes over a period of a few days -certainly a week.  Saturn is much more sluggish.

Look at the chart and you’ll see how little Saturn changes position over the course of an entire year – it moves roughly 12 degrees.  To see this in the sky , find Saturn. Hold your fist at arms length so Saturn is just below it. Just above your fist is where Saturn was last year. Put Staurn on top of your fist and just below your fist is where it will be next year. So how long will it take Saturn to get around the sky to roughly the same position? Well, 360/12 = about 30 years!  Now if you think a moment, the Moon takes about 30 days to get around our sky – and that means the Moon moves each day about 12  degrees –  the same apparent distance covered by Saturn each year.  All of which should tell you that it would be reasonable to assume Saturn is much farther away from us than the Moon – which, of course, it is.

None of this is rocket science or in any way  profound, but I find it interesting to contemplate as I look up and see Saturn. I measure that distance it will travel in the next year and in my mind’s eye I perch above the Solar System and I see a long thin pie slice reaching from me to Saturn’s distance orbit and this helps me keep things in perspective – gives me a better intuitive feel for the neighborhood in which we live.  OK – for the record Saturn is moving at about 22,000 miles an hour, Mars about 54,000 miles an hour in a much shorter orbit, and we’re whipping right along close to 67,000 miles an hour – and we don’t even feel the wind in our face! Oh – and Saturn’s actual orbital period is 29.458 years.

On to this month’s new guidepost stars!

Vega and Spica are each fascinating stars, but let’s start with Vega. Shining brightly not far above the northeastern horizon as the evening begins, Vega comes about as close to defining the word “star” as you can get. In “The Hundred Greatest Stars” James Kaler calls it “the ultimate standard star” because its magnitude is about as close to zero as you can get (.03) and its color is about as close to white as you can get. (If you’re one of those who assumed all stars are white, you’re forgiven. Individuals vary in their ability to see different colors in stars and for everyone the color differences are subtle – in fact I think of them as tints rather than colors. )

It’s hard not to be attracted to Vega when you read Leslie Peltier’s wonderful autobiography, “Starlight Nights.” Vega was central to his astronomical observing throughout his career because he began with it when he first started reading the book from which I got the idea for this web site, “The Friendly Stars” by Martha Evans Martin. Peltier wrote:

According to the descriptive text Vega, at that very hour in the month of May, would be rising in the northeastern sky. I took the open book outside, walked around to the east side of the house, glanced once more at the diagram by the light that came through the east window of the kitchen, looked up towards the northeast and there, just above the plum tree blooming by the well, was Vega. And there she had been all the springtimes of my life, circling around the pole with her five attendant stars, fairly begging for attention, and I had never seen her.

Now I knew a star! It had been incredibly simple, and all the stars to follow were equally easy.

Vega went on to be the first target of the 2-inch telescope he bought with the $18 he made by raising and picking strawberries. (This was around 1915.) And Vega became the first target for every new telescope he owned until his death in 1980. If you still don’t know a star, go out and introduce yourself to Vega early on a May evening. Even without a plum tree to look over, you can’t miss her! And once you’ve done that you’re well on your way to making the night sky your own.  (And yes, Vega is the star from which the message comes in Carl Sagan’s book/movie “Contact.”)

Vital stats for Vega, also known as Alpha Lyrae:

• Brilliance: Magnitude .03 ; a standard among stars; total radiation is that of 54 Suns.
• Distance: 25 light years
• Spectral Type: A0 Dwarf
• Position: 18h:36m:56s, +38°:47′:01″

Spica, a really bright star – honest!

Spica is truly a very bright star, but the numbers you may read for its brightness can have you pulling your hair. That’s because there are at least four common ways to express the brightness of Spica and other stars, and writers don’t always tell you which way they’re using. So let’s look at these four ways and see what they mean for Spica.

The first is the most obvious. How bright does it look to you and me from our vantage point on Earth using our eyes alone? We then assign it a brightness using the magnitude system with the lower the number, the brighter star. (For full discussion of this system, see “How bright is that star?”)

By this measure Spica is 16th on the list of brightest stars and is about as close as you can come to being exactly magnitude 1. (Officially 1.04) Though I should add here that the number really marks the midpoint of a magnitude designation – that is, any star that is in the range of magnitude .5 to magnitude 1.5 is called “magnitude 1” and so on for the other numbers on the scale.

But that scale talks about what we see. It doesn’t account for distance. Obviously if you have two 60-watt light bulbs and one is shining 6 feet away from you and the other 1,000 feet away, they are not going to look the same brightness. But if we put them both at the same distance – say 100 feet – they would look the same. So it is with stars. To compare them we pretend they all were at the same distance – in this case 10 parsecs, which is about 32.6 light years. Put our Sun at that distance and it would be magnitude 4.83. (That’s about as faint as the fainest stars we see in the Little Dipper.) We call that its absolute magnitude.

The absolute magnitude for Spica is -3.55 – not quite as bright as dazzling Venus.

Wow! That’s pretty bright compared to our Sun! Yes it is. Sun 4.83; Spica -3.55. Don’t miss the “minus” sign in front of Spica’s number! That means there’s more than eight magnitudes difference between the Sun and Spica. And that relates to the next figure you are likely to see quoted. Something that is called its luminosity. Luminosity compares the brightness of a star to the brightness of our Sun. Unfortunately, the term is often misused – or poorly defined. Thus in the Wikipedia article I just read on Spica it said that “Spica has a luminosity about 2,300 times that of the Sun.” Yes, but what does that mean? It means that if we were to put the two side by side, Spica would appear to our eyes to be 2,300 times as bright as our Sun.

That is bright! But there’s more, much more. Spica is also a very hot star – in fact one of the brightest hot stars that we see with our naked eyes. But we miss most of that brightness because most of it is being radiated in forms of energy that our eyes don’t detect. In the case of Spica, that is largely ultraviolet energy. The Wikipedia article actually listed Spica’s luminosity twice, and the second time it gave it as “13,400/1,700.”

Oh boy – now we have Spica not 2,300 times as bright as the Sun, but more than 13,000 times as bright. Now that IS bright – but is it right? Yes! So why the difference? Again, the first “luminosity” given – 2,300 times that of the Sun – is measuring only what we can see with our eyes. The second is measuring total amount of electromagnetic radiation a star radiates and is properly called the “bolometric luminosity.” And why two numbers for that last figure? 13,400/1,700? Because while Spica looks like one star to us, it is really two stars that are very close together and one is much brighter than the other. So what we see as one star is really putting out energy in the neighborhood of 15,100 times as much as our Sun.

This can get confusing, so I suggest you remember three things about Spica.

1. It defines first magnitude, having a brightness as it appears to us of 0.98 – closer than any other star to magnitude 1.

2. It is really far brighter (magnitude -3.55), but appears dim because it is far away – about 250 light years by the most recent measurements.

3. It is very hot – appearing blue to our eyes – and because it is very hot it is actually radiating a lot more energy in wavelengths we don’t see, so it is far, far brighter than our Sun.

Spica is the brightest star in the constellation Virgo, one of those constellations where you can not really connect the dots and form a picture of a virgin unless you have an over abundance of imagination. Besides, the remaining stars are relatively faint. That’s why we focus on the bright stars and sometimes those simple patterns known as “asterisms” and use them as our guides.

Vital stats for Spica, also known as Alpha Virgo:

• Brilliance: Magnitude .98 ; as close to magnitude 1 as any star gets; a close double whose combined radiation is the equal of 15,100 Suns.
• Distance: 250 light years
• Spectral Types: B1,B4 Dwarfs
• Position: 13h:25m:12s, -11°:09′:41″

Guideposts reminder

Each month you’re encouraged to learn the new “guidepost” stars rising in the east about an hour after sunset. One reason for doing this is so you can then see how they move in the following months. If you have been reading these posts for several months, you may want to relate Spica to two earlier guidepost stars with which it forms a right triangle, Arcturus and Regulus. Here’s what that triangle looks like.

Click image for larger view. (Created, with modifications, from Starry Nights Pro screen shot.)

Click here to download a printer-friendly version of this chart.

Once you have identified the Right Triangle, note carefully the positions of Spica and Regulus. They pretty much mark the “ecliptic.” This is the path followed by the Sun. Also, within about 9 degrees north or south of it, you will find the planets and the Moon. That’s well illustrated in 2012 by the presence of both Saturn and Mars, very near the ecliptic, as noted on our chart.

Arcturus and Regulus are not the only guidepost stars and asterisms in the May sky. Again, if you have been reading these posts for several months, be sure to find the stars and asterisms you found in earlier months. Early on a May evening these will include, from east to west, the following: Arcturus, Spica, Saturn, Leo’s Rump (triangle), The Sickle,  Mars, Regulus, the Beehive, Procyon, Sirius, Pollux, Castor, and in the northwest near the horizon, Capella, and the Kite. Venus will be a bright evening “star” in the west, and if you look early in the month you may catch a glimpse of Sirius and Betelgeuse before they set.

August 2012 – Mars, Saturn, Spica in the west – and a spectacular Perseids shower

Should you watch the planet show in the West in the evening? Or the meteor shower in the morning? Why not both? And if you’re getting up early to see the Perseids at their best, be sure not to miss brilliant Venus and Jupiter – well, how could you?

Over in the west we have Mars showing you how fast a planet can appear to move as it runs between  Saturn and Spica – over a period of three weeks making a colorful red, blue and yellow display.  And all over the sky for several days this month you are likely to pick up a brilliant, Perseid meteor – but particularly on the morning of the 12th of August with the 13th a good back-up – and this year’s show should be especially good because the Moon will not put in an appearance until early morning and will not be bright enough to ruin the show.

Let’s start with the west – week-by-week the changing scene will look like this low in the southwest about an hour after sunset:

The circle is 7 degrees – roughly what you can expect from a low power binocular view.

 

A fun night because a young, crescent Moon joins our trio.

You will need a clear and unobstructed  western horizon for this one because these three objects are roughly 10 degrees – one fist – above the horizon. (Early in the month they’ll be a bit higher – late in the month they get quite low.  Now what I love about this event is it demonstrates three things –

  • Color in the sky – Saturn is yellow, Mars, Red, and Spica blue. But these colors are subtle. You’ll see them better if you use binoculars and you might want to review this post on star colors to better know what to expect.
  • Perception and the effect of motion – from night to night Saturn will hardly appear to change positions relative to the background stars at all,  and Spica won’t  change – but Mars will whip right along and this will be amply clear as you check it’s position against the other two.  The reason is simple – Mars is much closer to us at about 158 million miles; Saturn is about 939 million miles and, of course, Spica is so far away we measure its distance in light years – 263.
  • The time dimension is on display as well – Mars is roughly 14 light minutes from us, Saturn is  well over a light hour, and Spica  263 light years. So what appears to be a two dimensional scene is revealed to be three dimensions as you observe the rapid motion of Mars and picture the solar system – and when you put your mind to it, you understand that the instantaneous nature of the scene is an illusion – that you are really looking into the fourth dimension and what happens simultaneously from your perspective is really happening at much different absolute times.

To help grasp the situation, take a look at this Orrery view of the Solar system for August 7. Keep in mind two things. The east-to-west motion we see as the night goes on is due to the spinning of the Earth.   The night-to-night westward – downward – drift of all  is caused by the motion of the Earth in its orbit around the Sun.

Orrery view for August 7, 2012, (Click image for larger version.)

The yellow arrow in the image above shows our view of Mars and Saturn in the evening sky. As the Earth rotates counter clockwise on any given evening, first Jupiter, then Venus come into view in our morning sky – red arrow.  If you then picture the Earth moving ahead in its orbit it’s not hard to understand why Saturn and  Mars will eventually be lost from view, while Jupiter will appear earlier each evening. Venus is a bit more complex. It too will get lost in the glare of the Sun, but since it is moving faster than us the change will appear to take place fairly slowly. Maybe I’m just slow, but it has taken me years to move from these abstract representations of what we see in the sky and how the planets are moving, to get to the point where I can look up and have a genuine, intuitive sense of what’s going on. Very satisfying and worth the effort, but even if you don’t do that, it’s a wonderful show! (The Orrery view is obtained from Solar System live web site. Go there and play with the dates to see the changing motions of the planets.)

Perseids in the morning

OK – so much for the evening sky. The morning sky is really spectacular because we’re looking at a section of sky that contains a lot of our brightest stars and  two terrific star clusters, plus the two brightest planets. What backdrop for a brilliant meteor shower!

The red oval represents the area opf the sky from which the Perseid meteors appear to radiate – however, they can go in any direction from here and might appear any where in the sky. (Click image for larger version. Prepared from Starry Night Pro screen shot.) Here’s a quick guide.

Perseids – a quick guide

When:

The night of  August 11-11 starting about 90 minutes after sunset, but best after midnight. And if that night is likely to be cloudy, the next night of August 12-13 might prove to be just as good, but the best chance looks like the 11-12. (There’s no doubt you should see meteors either night – but there is doubt as to exactly when the shower will peak.)

Where:

Any place you have a clear and dark sky – the more horizon visible the better, but in truth you can only look in one area at a time, so a clear, dark sky to the northeast is best. While a Perseid meteor can appear anywhere in the sky, your best chance to see  several will be to scan the sky to the northeast in the general vicinity of the “W” of Cassiopeia.  However,  you don’t have to fixate on one region. Get comfortable, look high in the northeast, and from time to time look around to different sections of the sky to enjoy the sights and stay alert. My most memorable Perseid skimmed the horizon to the north.

What can you expect to see?

Under the best conditions at the peak of the shower, you can expect to see between one and two meteors a minute! But I never seem to achieve those best conditions, so I don’t raise my hopes too high. I’m just sure I’ll see many more meteors than normal, but fewer than I would in a year when the Perseids are at their very best.  To put numbers to it, I’d be delighted if I averaged one every five minutes. For everyone, everywhere, the intensity of the annual Perseid “meteor shower” is in a down swing, but because we’ll have little interference from the Moon, this should be a better than average year.

Meteors and meteor showers are fun if for no other reason than they are a chance to see something happening in the sky. Much of what we look at doesn’t change – or rather changes so slowly we don’t notice the change. Meteors, on the other hand, demand that you be looking in the right place at the right time. Only on the very rare, very bright meteors do we actually have time to alert others and have them turn their heads and see what we see.  And what we see is a space event happening closer to us than any other natural one. What’s more, meteors can have real scientific value.  They are viewed by some as our cheapest “space probe.” They are relatively pristine bits of matter left over from the early days of the solar system and so can tell a story to those who know how to read them.

Meteors – “falling stars ” – can be seen any time. You don’t have to wait for a “shower” like the Perseids; you just have to be lucky. But they are most frequent at certain times in the year when the Earth happens to be plowing through a meteoroid-rich area.  We call this occasion a meteor shower. (For your dictionary: A meteoroid is a small bit of space rock that becomes a meteor when it collides with our  atmosphere and heats to incandescence as it descends towards Earth. When it gets here – which is rarely as anything except fine, incinerated dust – it is a meteorite. )

The reason for a shower such as the Perseids is that we are passing through the debris trail of a comet. Think about it. The general model for a comet is a “dirty snowball,” and as that dirty snowball nears the Sun it melts, and as it melts it leaves a trail of dirt particles behind it – particles that remain in orbit until something like the Earth sweeps by and captures some of them with its gravity.

The comet itself can vanish entirely – but the result is a river of space dust – a river that is most intense nearest where the comet actually was.  That’s why there are some years – the 1990s in the case of the Perseids – when the meteor shower is more intense than others.  Now we are in a period when we are passing through the trail of the comet that creates the Perseids at a point where that trail is relatively sparse – so there will simply be fewer Perseids than there were  15-20 years ago.

That trail is not encountered all over the sky. It collides with our atmosphere near a particular point in our sky. That point is called the radiant – you might think of it as a hole through which the Perseids fall – and in the case of the Perseids, it appears to be in the constellation Perseus.  But we don’t see all the meteors at this point. We see a meteor only when its collision with our atmosphere is intense enough to make it burn up. The faint meteors we see are made by a speck of dirt about the diameter of a pencil lead. The brightest ones are caused by something about the diameter of the pencil’s eraser.  In either case it will, for all practical purposes, burn up entirely in our atmosphere – 50 to 75 miles up – and nothing significant will remain for anyone to find on Earth. But exactly where it burns up is another thing. That’s why we will see a sudden flare – a falling star – anywhere in the sky.

And that’s awesome! Consider this: If someone struck a match 50 miles away would you see it?  Yet a grain of sand, hurtling into the atmosphere, shows us such a brilliant light we can’t miss it!

When you are watching for Perseids, you don’t have to look near the radiant point, though you will see more there.  A meteor can flare up suddenly anywhere and appear to draw a short (usually 5-10 degrees long) straight line across the dome of the sky. (Bright ones may actually leave a trail, which you can see for a few seconds with the naked eye or longer with binoculars.) If we trace a line backwards along the meteor’s trail we will see it comes from the area near the radiant point.

In the early evening, that Perseid radiant point is low in the northeast. That means nearly half the meteors that are radiating from it are happening below our eastern horizon. That’s why the shower is best in the early morning hours when the radiant is high in our sky. If the radiant is overhead, then we have nearly doubled our chances of seeing a meteor.

There are many meteor showers in the course of a year and some are better than others. The Perseids is one of the most reliable ones and happens to come at a convenient time for northern hemisphere observers when it is comfortable to be out at night, lying on the ground, and looking up.

Personally, I don’t like the word “shower.” It immediately gives the impression that what we are going to see will be more intense than what most of us actually experience. I prefer calling this a meteor “event.” But, we have been calling such events “showers” for years, and too often they are hyped in the press and then people are disappointed when nothing like a shower occurs. So keep your expectations realistic and you won’t be disappointed.

In the final analysis there’s only so much time you can spend lying on your back gazing at the starry sky; though I very much enjoy that time, it’s made much more enjoyable by knowing that at any instant there’s a heightened likelihood that I will see a bright meteor.  That – and the summer Milky Way – make looking for Perseids in a dark and moonless sky always worth the effort for me.

All square on a 2012 July morning with Jupiter, Venus, the Moon and Aldebaran

That is, all will be square in the morning sky  July 15, 2012 and in the evening sky July 24, 2012 – two dates to keep in mind this month. However, Mercury puts on one of its now-you-see-it, now-you-don’t shows the first week of the month in the west and all – Venus and Jupiter flirt with the gorgeous star clusters – the Hyades and Pleiades – in the morning sky.  Here was the scene from  my driveway this morning, July 1, 2012 – typical of the whole month and quite dazzling!

I snapped this about 4 am on July 1, 2012 looking east from 42* N latitude. That’s Jupiter at about magnitude -2 on top, and Venus at -4.4 on the bottom. Aldebaran was still hidden by the trees and my skies were too murky – and twilight already too advanced – to pick up the Pleiades easily, though scanning this area with binoculars revealed them and the Hyades. (Click photo for much larger image.)

Meanwhile, over in the west you still have a chance to catch “fleeting” – make that “fleeing” – Mercury. Here’s where to find it.

At magnitude .6 Mercury is significantly brighter than the other stars, although this image makes it seem less. Use binoculars to find it – though you should be able to see it with your naked eye. Click image for a much larger view. (Prepared from Starry nights Pro screen shot.)

OK – about  the “all square” business

It’s really not a square, but it should be a pretty rectangle that will vary a bit depending on just where you are located and exactly when you look. On the morning of  July 15 the eastern sky should look something like this – at least for those in mid-Northern latitudes. With an unobstructed horizon and clear skies the best view will be about two hours before sunrise. After that it becomes a race – planets and stars all climbs higher and thus are easier to see as time goes by – but, of course, the skies also get lighter as summer twilight starts early.

Click image for a much larger view. (Prepared from Starry nights Pro screen shot.)

 

In fact, all month Jupiter and Venus turn up the dazzle in the early morning sky, playing in the general vicinity of  the Pleiades and the Hyades. An unobstructed eastern horizon helps, as do binoculars if you want to get a good look at the two star clusters even in twilight.  By the end of the month Jupiter will be in the Hyades and Venus will have dropped quite a bit lower – yet the whole star show will be significantly higher at the same hour. Fun to catch it several times to observe the changing dynamics of our solar system playing against the backdrop of the rest of the universe.

And in the evening sky

The second “square” feels a bit like a mirror image. I don’t think it will be as dazzling because the planets involved simply aren’t as bright  and the Moon will be significantly brighter. Still, this one takes place in the early evening of July 24, 2012 and involves Saturn, brightest at magnitude .77, Mars at magnitude 1, Spica at almost the exact same brightness as Mars, and a 6-day-old Moon.

Click image for a much larger view. (Prepared from Starry nights Pro screen shot.)

 

 

 

Look East! Slide down to Saturn and Spica in May 2012!

It’s a tad easier to find Saturn and Spica if you found Arcturus in April, but if not you’ll simply get a “two-for-one-special” for your effort this month. As always, start about 45 minutes to an hour after sunset. In May 2012 there should be four bright “stars” in the East, but one is a planet. In order from north-to-south they are Vega, Arcturus, Saturn, and Spica. As the sky gets darker the bright stars of the Big Dipper, high in the northeast, will guide you.

All you really want is the three stars of the Dipper’s handle. It forms a wonderful arc, and if you follow the curve of that arc, it will always take you to Arcturus. Continue the same curve for about the same distance, and you will come to the beautiful – but fainter – blue-white gem, SpicaSaturn is very close to Spica, though yellowish, compared to the rich lue of the star. And Vega is way at the other end – just coming up in the northeast. It is very close to the same brightness as Arcturus. All of which, I’m sure, is much easier to grasp if you simply look at this month’s “look east” chart.

Notice that the distance between the last star in the handle of the Big Dipper and Arcturus is almost exactly the same as the distance between Arcturus and Spica - a good way to make sure you're looking at the right star! Also note the movement of Saturn from 2011 to 2013. Click image for larger version. (Developed from Starry Nights Pro screen shot.)

Click here to download a printer-friendly version of this chart.

We dealt with Arcturus last month. Saturn will be in our sky most of the night and as always is a treat for the small telescope user. From a naked eye perspective,  it’s fun to remember that the name “planet” means “wanderer” in Greek, but all “wanderers” are not created equal. Mars, Venus, and Mercury move  so quickly in our night sky that you can easily mark their changes over a period of a few days -certainly a week.  Saturn is much more sluggish.

Look at the chart and you’ll see how little Saturn changes position over the course of an entire year – it moves roughly 12 degrees.  To see this,f ind Saturn. Hold your fist at arms length so Saturn is just below it. Just above your fist is where Saturn was last year. Put Staurn on top of your fist and just below your fist is where it will be next year. So how long will it take Saturn to get around the sky to roughly the same position? Well, 360/12 = about 30 years!  Now if you think a moment, the Moon takes about 30 days to get around our sky – and that means the Moon moves each day about 12  degrees –  the same distance covered by Saturn each year.  All of which should tell you that it would be reasonable to assume Saturn is much farther away from us than the Moon – which, of course, it is.

None of this is rocket science or in any way  profound, but I find it interesting to contemplate as I look up and see Saturn. I measure that distance it will travel in the next year and in my mind’s eye I perch above the Solar System and I see a long thin pie slice reaching from me to Saturn’s distance orbit and this helps me keep things in perspective – gives me a better intuitive feel for the neighborhood in which we live.  OK – for the record Saturn is moving at about 22,000 miles an hour, Mars about 54,000 miles an hour in a much shorter orbit, and we’re whipping right along close to 67,000 miles an hour – and we don’t even feel the wind in our face! Oh – and Saturn’s actual orbital period is 29.458 years.

On to this month’s new guidepost stars!

Vega and Spica are each fascinating stars, but let’s start with Vega. Shining brightly not far above the northeastern horizon as the evening begins, Vega comes about as close to defining the word “star” as you can get. In “The Hundred Greatest Stars” James Kaler calls it “the ultimate standard star” because its magnitude is about as close to zero as you can get (.03) and its color is about as close to white as you can get. (If you’re one of those who assumed all stars are white, you’re forgiven. Individuals vary in their ability to see different colors in stars and for everyone the color differences are subtle – in fact I think of them as tints rather than colors. )

It’s hard not to be attracted to Vega when you read Leslie Peltier’s wonderful autobiography, “Starlight Nights.” Vega was central to his astronomical observing throughout his career because he began with it when he first started reading the book from which I got the idea for this web site, “The Friendly Stars” by Martha Evans Martin. Peltier wrote:

According to the descriptive text Vega, at that very hour in the month of May, would be rising in the northeastern sky. I took the open book outside, walked around to the east side of the house, glanced once more at the diagram by the light that came through the east window of the kitchen, looked up towards the northeast and there, just above the plum tree blooming by the well, was Vega. And there she had been all the springtimes of my life, circling around the pole with her five attendant stars, fairly begging for attention, and I had never seen her.

Now I knew a star! It had been incredibly simple, and all the stars to follow were equally easy.

Vega went on to be the first target of the 2-inch telescope he bought with the $18 he made by raising and picking strawberries. (This was around 1915.) And Vega became the first target for every new telescope he owned until his death in 1980. If you still don’t know a star, go out and introduce yourself to Vega early on a May evening. Even without a plum tree to look over, you can’t miss her! And once you’ve done that you’re well on your way to making the night sky your own.  (And yes, Vega is the star from which the message comes in Cal Sagan’s book/movie “Contact.”)

Vital stats for Vega, also known as Alpha Lyrae:

• Brilliance: Magnitude .03 ; a standard among stars; total radiation is that of 54 Suns.
• Distance: 25 light years
• Spectral Type: A0 Dwarf
• Position: 18h:36m:56s, +38°:47′:01″

Spica, a really bright star – honest!

Spica is truly a very bright star, but the numbers you may read for its brightness can have you pulling your hair. That’s because there are at least four common ways to express the brightness of Spica and other stars, and writers don’t always tell you which way they’re using. So let’s look at these four ways and see what they mean for Spica.

The first is the most obvious. How bright does it look to you and me from our vantage point on Earth using our eyes alone? We then assign it a brightness using the magnitude system with the lower the number, the brighter star. (For full discussion of this system, see “How bright is that star?”)

By this measure Spica is 16th on the list of brightest stars and is about as close as you can come to being exactly magnitude 1. (Officially 1.04)Thopugh I should add here that the number really marks the midpoint of a magnitude designation – that is, any star that is in the range of magnitude .5 to magnitude 1.5 is called “magnitude 1” and so on for the other numbers ont he scale.

But that scale talks about what we see. It doesn’t account for distance. Obviously if you have two 60-watt light bulbs and one is shining 6 feet away from you and the other 1,000 feet away, they are not going to look the same brightness. But if we put them both at the same distance – say 100 feet – they would look the same. So it is with stars. To compare them we pretend they all were at the same distance – in this case 10 parsecs, which is about 32.6 light years. Put our Sun at that distance and it would be magnitude 4.83. (That’s about as faint as the fainest stars we see in the Little Dipper.) We call that its absolute magnitude.

The absolute magnitude for Spica is -3.55 – not quite as bright as dazzling Venus.

Wow! That’s pretty bright compared to our Sun! Yes it is. Sun 4.83; Spica -3.55. Don’t miss the “minus” sign in front of Spica’s number! That means there’s more than eight magnitudes difference between the Sun and Spica. And that relates to the next figure you are likely to see quoted. Something that is called its luminosity. Luminosity compares the brightness of a star to the brightness of our Sun. Unfortunately, the term is often misused – or poorly defined. Thus in the Wikipedia article I just read on Spica it said that “Spica has a luminosity about 2,300 times that of the Sun.” Yes, but what does that mean? It means that if we were to put the two side by side, Spica would appear to our eyes to be 2,300 times as bright as our Sun.

That is bright! But there’s more, much more. Spica is also a very hot star – in fact one of the brightest hot stars that we see with our naked eyes. But we miss most of that brightness because most of it is being radiated in forms of energy that our eyes don’t detect. In the case of Spica, that is largely ultraviolet energy. The Wikipedia article actually listed Spica’s luminosity twice, and the second time it gave it as “13,400/1,700.”

Oh boy – now we have Spica not 2,300 times as bright as the Sun, but more than 13,000 times as bright. Now that IS bright – but is it right? Yes! So why the difference? Again, the first “luminosity” given – 2,300 times that of the Sun – is measuring only what we can see with our eyes. The second is measuring total amount of electromagnetic radiation a star radiates and is properly called the “bolometric luminosity.” And why two numbers for that last figure? 13,400/1,700? Because while Spica looks like one star to us, it is really two stars that are very close together and one is much brighter than the other. So what we see as one star is really putting out energy in the neighborhood of 15,100 times as much as our Sun.

This can get confusing, so I suggest you remember three things about Spica.

1. It defines first magnitude, having a brightness as it appears to us of 0.98 – closer than any other star to magnitude 1.

2. It is really far brighter (magnitude -3.55), but appears dim because it is far away – about 250 light years by the most recent measurements.

3. It is very hot – appearing blue to our eyes – and because it is very hot it is actually radiating a lot more energy in wavelengths we don’t see, so it is far, far brighter than our Sun.

Spica is the brightest star in the constellation Virgo, one of those constellations where you can not really connect the dots and form a picture of a virgin unless you have an over abundance of imagination. Besides, the remaining stars are relatively faint. That’s why we focus on the bright stars and sometimes those simple patterns known as “asterisms” and use them as our guides.

Vital stats for Spica, also known as Alpha Virgo:

• Brilliance: Magnitude .98 ; as close to magnitude 1 as any star gets; a close double whose combined radiation is the equal of 15,100 Suns.
• Distance: 250 light years
• Spectral Types: B1,B4 Dwarfs
• Position: 13h:25m:12s, -11°:09′:41″

Guideposts reminder

Each month you’re encouraged to learn the new “guidepost” stars rising in the east about an hour after sunset. One reason for doing this is so you can then see how they move in the following months. If you have been reading these posts for several months, you may want to relate Spica to two earlier guidepost stars with which it forms a right triangle, Arcturus and Regulus. Here’s what that triangle looks like.

Click image for larger view. (Created, with modifications, from Starry Nights Pro screen shot.)

Click here to download a printer-friendly version of this chart.

Once you have identified the Right Triangle, note carefully the positions of Spica and Regulus. They pretty much mark the “ecliptic.” This is the path followed by the Sun. Also, within about 9 degrees north or south of it, you will find the planets and the Moon. That’s well illustrated in 2012 by the presence of both Saturn and Mars, very near the ecliptic, as noted on our chart.

Arcturus and Regulus are not the only guidepost stars and asterisms in the May sky. Again, if you have been reading these posts for several months, be sure to find the stars and asterisms you found in earlier months. Early on a May evening these will include, from east to west, the following: Arcturus, Spica, Saturn, Leo’s Rump (triangle), The Sickle,  Mars, Regulus, the Beehive, Procyon, Sirius, Pollux, Castor, and in the northwest near the horizon, Capella, and the Kite. Venus will be a bright evening “star” in the west, and if you look early in the month you may catch a glimpse of Sirius and Betelgeuse before they set.

Luna-See – Let the Moon of August 2011 be your guide!

Anyone can find the Moon – so why not use it to help you learn the sky?

Moon and Mars in the early morning sky, August 25, 2011.

Each month the Moon in its travels comes near some planets, bright stars, and asterisms. If you look on the right night this month you’ll be able to use the Moon to help you find:

  • Saturn and Spica (August 2, 3 & 4)
  • Antares and the Scorpion (August 7)
  • The Arrowhead with the asteroid Vesta (August 13)
  • The Hockey Stick and Jupiter (August 19)
  • Pleiades, Hyades, & Aldebaran (August 22)
  • Taurus (August 23)
  • Mars with the heavenly twins, Castor and Pollux (August 25)

Whew! That’s a whole lot.  And you’ll find when and exactly where to look by using the charts below. You have to pick the right night and you have to  be ready to approximate – the charts are a rough guide as to when and where to look – and use binoculars to help you find otherwise bright stars because the Moon light will tend to wash out  all but the brightest.

I say “rough guide” because these charts are all for my specific location on the Northeast Coast of the United States. The moon moves about half a degree (its diameter) an hour, so observers on the West Coast will see it in a little different location than I do. But the charts should give a good general guide and help you know the night sky better – and as a bonus you’ll begin to develop a feel for the rather complex motion of the Moon each month.

Notice that for the first half of the month the Moon is in the early evening sky. For the second half it is in the morning sky. The Moon’s image in the charts is about three times as big as it actually is in order to show the phase clearly.

Click any chart to get a larger version. All charts are prepared from Starry Nights Pro screen shots.

Saturn and Spica, (August 2, 3 & 4)

Antares and the Scorpion (August 7)

The Arrowhead with the asteroid Vesta (August 13)

The Hockey Stick and Jupiter (August 19)

Pleiades, Hyades, & Aldebaran (August 22)

Taurus (August 23)

Mars with the heavenly twins, Castor and Pollux (August 25)

Moon phases

  • New Moon  – July 31
  • First Quarter – August 6
  • Full – August 13
  • Last Quarter -August 21
  • New Moon – August 28
%d bloggers like this: