• Choose a month

  • Rapt in Awe

    My Journey through the Astronomical Year

    Think of this as a "companion text" to this, the main web site. Not required reading, butI hope you'll find it interesting and helpful.

Events April 2014: Mars, the Moon, and the Earth’s Shadow – Yes, a Total Lunar Eclipse !



Love those Lunar eclipses, but who was in charge of the scheduling for this one? Some insomniac like me, no doubt, for on the East Coast of the USA where I live this thing really doesn’t pick up steam until about 2 am April 15, then continues until near when the Moon sets just before dawn. The West coast residents get a somewhat more timely view.

Here’s the schedule for those in the Eastern Daylight Time zone on the morning of April 15:

1:57 am partial eclipse begins

3:06 am totality begins

3:45 am mid-eclipse

4:25 am totality ends

5:33 am partial ends

The Moon sets about the time the Sun rises, which varies according to location. (Eclipses happen at the same time all over the world – but of course what time that is for your location depends on your time zone – and for some, the Moon simply won’t be in your sky during the eclipse hours.  For a complete guide to where this eclipse can be seen and when for your location, see the NASA eclipse pages.

There’s an incredible NASA eclipse Javascript on this page that delivers all sorts of eclipse data and time for anywhere in the world – however, I did notice that the times were  standard – so you need to adjust for daylight savings if relevant.

What adds a special touch to this eclipse is that Mars will be pretty close to the Moon from the time the Moon rises near sunset. I always like watching the fainter stars come out as the Moon goes into total eclipse, then slowly vanish as it comes back. But with this eclipse, Mars will provide a special treat with it’s ruddy hue shining brighter than any of the nearby stars – though Arcturus and Spica will both rival it.  Here’s a chart for my location – the same relationships will apply anywhere, but those farther west will see the orientation of the chart shift since the Moon and stars will be higher in their sky at this point.



Click image for larger version. (Prepared from Starry Nights Pro screen shot.)


The Scorpion should be beautiful on the southern horizon. For me the Moon is about 22 degrees above the southwest horizon at this point. If you have trouble finding it – eclipses vary on how dark they get, then simply look for Mars and Spica – if you get Spica in binoculars the Moon will be in the same field about 2 degrees east of it.

April Planet Parade

Click image for larger view. (Made from screen shot of Starry Nights Pro.)

No, you can’t see the Moon – it’s eclipsed! (Actually, it can be quite red and fairly easy to see – or it can be quite dark and difficult to see during totality. ) Click image for larger view. (Made from screen shot of Starry Nights Pro.)

Jupiter is high in the western sky all month, setting in the wee hours of the morning; by the end of the month it sets closer to midnight, but is still brighter than any star or any other planet in the evening sky.

However, Mars rivals Jupiter, taking over in the eastern sky in the early evening hours and remaining visible all night throughout April. It’s in retrograde motion this month, which means it appears to climb a bit higher in our sky as the month goes on, moving west against the background of stars. This is the best opportunity for two years for telescope users to get a good look at Mars.

Saturn gets high enough to view in the eastern sky about three hours after sunset at the start of the month, and two hours after sunset by the end of the month.

Venus is best seen low in the east about 45 minutes before sunrise, and on April 25th has a nice pairing with the crescent Moon. While Jupiter is brighter than any star, Venus is two magnitudes brighter than Jupiter, so it shows up well even though it is well into morning twilight before it is high enough to see easily. I like finding pretty spots to try to capture the crescent Moon, Venus, and foreground landscape  in twilight.  Here’s a shot I got at the Town Farm in Westport MA when there was a similar  arrangement of the Moon and Venus in March 2014.


Click image for larger view.


A Meteor Sprinkle

The annual Lyrids meteor “shower” is not nearly as intense as the Perseids in August or the Geminids in December, but if the night is clear it could be fun. It is supposed to peak (roughly 20 meteors per hour) on April 23 when a  waning crescent Moon will rise after 3 am and start to interfere some.

I must admit that with a shower like this I take it casually. That is, I go out and observe other things, but I keep an eye out for meteors, and if I see one, I try to trace its path backwards to see if it points in the general direction of the constellation Lyra – if it does, I assume it’s part of the shower and not a random meteor. You might see a shower meteor a few days before or after the peak, and it might come at any time of night in any part of the sky, but if I were going to pick an hour to keep a sharp eye out for Lyrids, it would be between 2 am and 3 am on the morning of April 23.

The Lyrids are believed to be remnants of Comet Thatcher, which orbits the Sun about every 415 years.



Prime Time observing for September 2009 – a square, a couch, dancing moons, and more!

Please note: All charts with this post are for observers in mid-nothern latitudes centered on 40° N. If you are 10 or more degrees south or north of that – or if you’re not sure of your latitude – please go here to make your own custom star charts.

Our focus as always is the eastern sky, 45 minutes after sunset, where in September 2009 we’ll find a brilliant Jupiter whose moons play a fascinating game of hide and seek. But our main goal will be to locate and remember  this month’s  two new asterisms the Great (empty) Square and Andromeda’s Couch.

Let’s start with Jupiter, though, because no prime time observer can fail to find Jupiter in the eastern sky starting about half an hour after sunset – there’s simply nothing brighter except the Sun and Moon – well nothing brighter in the eastern early evening sky.  Venus gets brighter than Jupiter, but it never appears in the eastern sky after sunset, though it is in the eastern sky these September mornings an hour or so before sunrise. If you’re one who likes to be up then, be sure to take a look – you can’t miss it!

Though not visible to the naked eye, what’s most fascinating about Jupiter is its four brightest moons. Yes, they look a lot like little stars, even in the telescope, but they are in a rough line with the planet’s mid-section and they continuously change positions around the planet from night to night. In fact these changes can be seen over the course of an hour or so, though at the least you need good binoculars that are held very steady in order to see them. Any small telescope, however, should reveal them easily. For an introduction to observing these four moons see the video and text here. This describes moon events for an extraordinary evening – September 2/3, 2009 – but at some time on many evenings you can observe one or two such events, so even if you miss the events of September 2/3, watching the animation and reading this should help you understand similar events that happen quite often whenever Jupiter is visible.

Of course Jupiter is not going to help you learn the rest of the night sky because like all planets it is constantly changing its position relative to the background stars. But our two bright asterisms for September will help and they are as simple as they come – a square with an arc of three bright stars attached to it.

Click chart for a much larger version.

Click chart for a much larger version.

The first is known as the “Great Square.” I call it the “Great (empty)  Square” because the area inside it is almost completely empty of other naked-eye stars.  The other asterism ties to it like the tail of a kite flying sideways.  It streams off one corner and I think of it as “Andromeda’s Couch.” Of course this is just my memory device – others would simply call this “Andromeda” because that’s the name of the constellation it dominates. I have difficulty seeing the lovely maiden, chained to a rock by looking at these stars and their companions, however. Like most constellations, with Andromeda you need a huge imagination to see the figure these stars represented to the ancients. But knowing Andromeda was a lovely woman who was rescued by Perseus, I like to think of this graceful arc of stars as her couch.  That said, notice three things about it:

1. The bright star at the right – southern – end is also a corner of the Great Square. In fact, it is the brightest star of the four that make up the square, but only by a little.

2. The three stars are pretty equally spaced. Hold your fist at arms length and it should easily fit in the gap between the stars which means there are 10-15 degrees between each star. That’s similar to the spacing between stars inthe Square.

3. There’s another dimmer, but fairly bright star, between the first star ( the one at the corner of the Square)  and the middle one.

And where’s the hero Perseus? he should be nearby, right? Well he’s on his way, rising in the northeast after Cassiopeia, but we’ll leave him for next month when he’s more easily seen.

Looking north

Meanwhile, for those in the northern hemisphere, the bright stars circling Polaris and always visible are well represented this month with the Big Dipper starting to move towards the horizon in the northwest and the “W” of Cassiopeia starting to take the dominant role in the northeast opposite it.

Click chart for a larger image. Northern skies as seen from about 40° N latitude in mid-September..

Click chart for a larger image. Northern skies as seen from about 40° N latitude in mid-September..

Our chart shows the northern celestial pole region about 90 minutes after sunset when skies are about as dark as they get. Will you see all these stars? Depends. First, on how much light pollution there is where you observe. Second, on how well your eyes are dark adapted. You must avoid white light for at least 15 minutes – better still, half an hour – if you wish to see the fainter stars. If you want to test how good your skies and night vision are, look at the Little Dipper. In light-polluted suburbs you will probably see just the three brightest stars. In good rural conditions you should see all seven.  And if you can see them, then this is a good opportunity to try to trace out Draco, one of a handful of constellations whose connect-the-dots pattern actually suggests the mythological figure of a dragon.  I love Draco, but quite honestly, I have to look for it – it doesn’t jump out at me the way the Big Dipper and the “W” do.  And as far as learning the sky – well, you learn the “W,” the Big Dipper and Polaris so you can then find stuff like Draco when you want to find it.

The arrows on the chart indicate the general direction in which the sky appears to move. Stay out an hour and this motion should become obvious to you.

. . . and the rest of the guideposts?

If you’ve located the new September asterisms then it’s time to check for the more familiar ones you might already know, assuming you have been studying the sky month by month.  (If this is your first month, you can skip this section. ) So here are the guidepost stars and asterisms still visible in our September skies.

  • The Summer Triangle is now high overhead, though still favoring the east. Vega, its brightest member, reaches its highest point about an hour after sunset and moves into the western sky. Altair and Deneb are still a bit east, but will cross the meridian within about three hours of sunset.
  • The “Teapot,” marking the area of the Milky Way approaching the center of our galaxy, is due south about an hour after sunset. Well into the southwest you’ll find the red star Antares that marks the heart of the Scorpion.
  • Arcturus (remember, follow the arc of the Big Dipper’s handle to Arcturus) is due west and about 25 degrees above the horizon as twilight ends.
  • The Keystone of Hercules and the circlet that marks the Northern Crown can both be found high in the western sky by tracing a line between Vega and Arcturus.

. . . our journey and September’s planets (2009)

In the course of a night you can still get a glimpse at all the planets – technically – but the truth is both Saturn and Mercury are very difficult to see this month, and Pluto is always just a faint speck visible in large amateur telescopes. Jupiter, as we’ve noted, dominates the evening sky in the southeast. Nearby – visible in binoculars or small telescopes – is Neptune. And an hour or so later, if you want to track it down with binoculars, Uranus will make a good test of your star-hopping skills.  In the morning sky both Mars and Venus are prominent, though Venus gets closer to the Sun throughout the month. At the start of the month Venus rises about three hours before the Sun – by the end of the month this is cut to about two hours – but even in twilight it is so bright it’s hard to miss.

Charts to help you find the  planets follow, but first, let’s look at the solar system from the perspective of someone in a spaceship hovering above it. This shows us where we are in our journey around the Sun and also gives us a chance to examine where the other planets are in relation to us. See if you can translate this perspective into what we see in our sky. The chart below was created with the Solar System Live capability found here. I added the arrows in Photoshop Elements simply to indicate the horizon and directions relating to the earth’s rotation on its axis.

Click image for larger view. Arrows indicate the western and eastern horizons at sunset on September 15, 2009. Smaller arrows show the direction these horizons move at the earth turns on its axis in the course of the night.

Click image for larger view. Arrows indicate the western and eastern horizons at sunset on September 15, 2009. Smaller arrows show the direction these horizons move as the earth turns on its axis in the course of the night. (Planets are not drawn to scale.)

Looking at the horizon line going out to the west – left – you can see that at sunset Saturn is nearly on the horizon.  Use the arrow going to the east (right) and you can see Uranus isn’t quite visible in our night sky at sunset, but Jupiter, Neptune, and Pluto are well beyond the eastern horizon.  Draw an imaginary line from Earth through Jupiter and you’ll see it comes near Neptune – which is why Neptune appears relatively close to Jupiter in our night sky this month, though you’ll need binoculars to find it. (Notice also that Neptune, while a giant planet, is more than twice the distance from the Sun as Jupiter – which is why it is so dim and small in our night sky while Jupiter is bright – and in a telescope – quite large. As these horizon lines rotate,  Saturn sets, followed by Mercury and  then several hours later Pluto and eventually Jupiter. Meanwhile, Uranus rises in the east, followed in the morning hours by Mars and Venus.  Notice also that Pluto is just a tad beyond Neptune these days, though the distance between them will slowly increase.  The chart does show, however, that for a while Neptune was our most distant planet. See how Pluto’s orbit was inside that of Neptune? Don’t forget, Pluto takes 248 earth years to get around the Sun once. These events hold generally true no matter where you are in the world, but they need to be fine tuned for your latitude. Folks in the southern hemisphere, for example, get a much better view of Saturn and Mercury early in the month, than those in the north.

Finding Uranus

Uranus can be found with binoculars – or in exceptional conditions the naked eye – but locating it is an advanced project for those already comfortable with finding the naked eye bright stars and asterisms. You need full darkness, your eyes should be dark adapted, and you should be in an area where light pollution isn’t a serious problem.  That said, finding this planet is relatively easy if you have a decent pair of binoculars and patience.  Here’s a chart to use. After reading the directions below, click on the chart to get a larger version.

This Uranus finder chart is meant to be used firstw ith the naked eye, then binoculars. The red circle represents the typical view with wide field 7X or 8X binoculars. See text for instructions. Click on chart for larger view.

This Uranus finder chart is for September, 2009, about two hours after sunset. It is meant to be used first with the naked eye, then binoculars. The red circle represents the typical view with wide field 7X or 8X binoculars. Included on this chart are many faint stars that can be seen only with binoculars. See text for instructions. Click on chart for larger view. (Made from Starry Nights Pro with modifications.)

Start your search by locating Jupiter and the Great Square. You may also see Fomalhaut, a first magnitude guidepost star that will be introduced in October.

Next look below the Great Square for the “Circlet.” This is a well-known asterism in the constellation Pisces – but in typical suburban skies it is a difficult object and you may be able to pick out just three of the brightest stars in it with your naked eye. In rural skies you should be able to see most of these stars with the naked eye, but try to locate them with binoculars. The entire Circlet probably will not fit in a single binocular field of view, but enough of it should so you know what you are seeing.

Now use your binoculars to try to locate the trapezoid of fainter stars below the Circlet. This little unnamed trapezoid will probably fit in your binocular field of view. The faintest star of these four is just a bit brighter than Uranus, so that gives you an idea of what you seek.

Finally, with your binoculars scan up and to the right (west)  of this trapezoid and you should pick up an arc of three stars all about the same brightness. The third – the highest – of these is Uranus. While you won’t see a disc, you may notice that it shines with a steadier light than the other two. This is typical of planets. In a good telescope Uranus will show a tiny disc and perhaps a greenish tinge, but to the casual observe may be easily mistaken for a star.

Finding Neptune

Neptune is both easier and harder to find than Uranus. Again, binoculars and a dark sky are needed. What makes it easier is it’s near Jupiter. What makes it harder, is it’s signifcantly fainter than Uranus – so faint that whether you see it or not will depend on how dark your skies are.  You will need this little finder chart, however, to pick it out of the starry background.

Finding Neptune requires binoculars, or a small telescope, and patience. Fortunately, Jupiter drops us right in the neighborhood! See text for complete directions - and click on chart to get an elarged version. (Made with screen shot from Starry Nights Pro. I added names and arrow.)

Finding Neptune requires binoculars, or a small telescope, and patience. Fortunately, Jupiter drops us right in the neighborhood! See text for complete directions - and click on chart to get an enlarged version. This charts is for mid-September, 2009, about two hours after sunset. Neptune will appear to move slightly towards Jupiter during the course of the month. (Made with screen shot from Starry Nights Pro. I added names and arrow.)

Step 1 – find Jupiter, the brightest “star” in the eastern sky. The red circle represents a widefield binocular view. Your binoculars may show a smaller field. Also see if you can spot the two bright stars in our chart that are to the left – east – of Jupiter. They are bright enough so you should be able to see them even in typical suburban skies. In any case, you certainly should be able to find them with binoculars by first locating Jupiter, then scanning to the left – eastward.

Step 2 – after locating the two bright stars, use binoculars to look for the arc of three dimmer stars above them. These three are about the same brightness as Uranus and just at the edge of naked eye visibility under excellent, dark skies. For most people this means they will be seen only in binoculars. Neptune is to their left – east – as indicated.

And for early risers – Venus and Mars!

A crescent moon and Venus dominate the morning sky in the east, along with Mars and half a dozen bright "winter" guidepost stars. Click chart for larger image. SLightly modified screen shot from Starry Nights Pro.

A crescent moon and Venus dominate the morning sky in the east, along with Mars and half a dozen bright "winter" guidepost stars. Click chart for larger image. SLightly modified screen shot from Starry Nights Pro.

Don’t miss the autumnal equinox!

OK – if you’re in the southern hemisphere, this marks the start of spring. In the northern hemisphere, it’s autumn. In either case, it’s when the Sun crosses the celestial equator and day and night are almost of equal length.

The autumnal equinox this year is on September 22, 2009, at  21:28 Universal Time.

So what? Well, if you’re just starting out in star gazing, this is a great time to get your bearings at your observing site. That is, on or about September 22 – a few days either way won’t matter much – note where the Sun either rises or sets. That marks the due east – or due west – point on your horizon and from that you can easily figure out where north and south are.

It’s also the day on which the reading of your equatorial sundial switches from one plate to the other. That is, in the north you go from the north-facing dial plate to the south-facing (underneath) one.  See our equatorial wrist dial project. if you want to know more about this.

And finally, I find it cool that day and night are nearly of equal length. For one thing, that means the stars get a break. For the next six months here in the north we’ll have longer nights and thus more time to enjoy the night sky.

%d bloggers like this: